Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 98(5): 1434-1443, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28295223

RESUMO

Most studies evaluating the effects of biodiversity on ecosystem functioning are conducted at a single location, limiting our understanding of how diversity-function relationships may change when measured across different spatial scales. We conducted a species-removal experiment at three sites nested in each of three regions along the rocky intertidal coastline of the Gulf of Maine, USA, to evaluate the potential for scale-dependent effects of species loss on the biomass of intertidal seaweed assemblages. We randomly assigned 50 plots in the mid-intertidal zone at each site to one of five treatments (n = 10 plots each): an unmanipulated control, a polyculture plot that contained our three target seaweed species, and three monoculture plots. We manipulated diversity by removing all non-target species from monoculture and polyculture plots, then removing additional biomass from polyculture plots, proportionate to species' relative abundances, so that the average amount removed from monoculture and polyculture plots was equivalent at each site. At the largest spatial scale, all sites considered together, after accounting for region and site nested within region seaweed diversity had consistent, positive effects on seaweed cover. Diverse polyculture plots always had higher cover than was predicted by the average performance of the component seaweed species and usually had higher cover than even the best-performing component species. Diversity effects weakened and became less consistent at smaller spatial scales, so that at the scale of individual sites, diverse polycultures only performed better than the average of monocultures ~40% of the time. Hence, our results indicate that weak and/or inconsistent biodiversity effects at the level of individual sites may scale up to stronger, more consistent effects at larger spatial scales. Quantitative summaries of biodiversity experiments conducted at the scale of individual sites do not capture this spatial aspect of biodiversity effects and may therefore underestimate the functional consequences of biodiversity loss.


Assuntos
Organismos Aquáticos/classificação , Biodiversidade , Biomassa , Organismos Aquáticos/crescimento & desenvolvimento , Ecossistema , Oceanos e Mares , Água do Mar , Alga Marinha
2.
Oecologia ; 175(2): 667-76, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24615494

RESUMO

Nutrients such as nitrogen (N) and phosphorus (P) limit primary productivity, and recent anthropogenic activities are changing the availability of these nutrients, leading to alterations in the type and magnitude of nutrient limitation. Recent work highlights the potential for N and P to interact to limit primary production in terrestrial and freshwater systems. However, mechanisms underlying co-limitation are not well described. Documentation of ambient nutrient levels and tissue nutrients of the intertidal macroalga Fucus vesiculosus for 2 years in the southern Gulf of Maine, USA, indicates that N availability may be impacting the ability of F. vesiculosus to access P, despite relatively high ambient P concentrations. To experimentally validate these observations, F. vesiculosus individuals were enriched with N or P for 6 weeks, followed by an uptake experiment to examine how the interactions between these nutrients affected macroalgal N and P uptake efficiency. Results illustrate that exposure of seaweed to different nutrient regimes influenced nutrient uptake efficiency. Notably, seaweeds enriched with N displayed the highest P uptake efficiency at low, biologically relevant, P concentrations. Our results confirm that N availability may be mediating the ability of primary producers to access P. These interactions between limiting nutrients have implications for not only the growth and functioning of primary producers who rely directly on these nutrients but also the entire communities that they support.


Assuntos
Fucus/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Fucus/crescimento & desenvolvimento , Maine , Oceanos e Mares , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA