Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 283: 127678, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503218

RESUMO

Charcoal rot caused by Macrophomina phaseolina is one of the most devastating diseases that cause severe yield loss in Gloriosa superba cultivation. Plant growth-promoting rhizobacteria (PGPR) are extensively harnessed as biocontrol agents due to their effectiveness in combating a wide array of plant pathogens through a multifaceted approach. The present study delved into the mechanisms underlying its ability to inhibit root rot pathogen and its capacity to promote plant growth in G. superba, commonly known as glory lily. PGPR isolated from the rhizosphere of glory lily were subjected to in vitro assessments using the dual plate technique. The isolated Bacillus subtilis BGS-10 and B. velezensis BGS-21 showed higher mycelial inhibition (61%) against M. phaseolina. These strains also promote plant growth by producing indole-3-acetic acid, siderophore, ammonia, amylase, cellulase, pectinase, xylanase, and lipase chemicals. Genome screening of BGS-10 and BGS-21 revealed the presence of antimicrobial peptide genes such as Iturin (ituD gene), surfactin (srfA and sfp genes) along with the mycolytic enzyme ß-1,3-glucanase. Further, the presence of secondary metabolites in the bacterial secretome was identified through gas chromatography-mass spectrometry (GC/MS) analysis. Notably, pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl), 9 H-pyrido[3,4-b] indole and L-leucyl-D-leucine exhibited the highest docking score against enzymes responsible for pathogen growth and plant cell wall degradation. Under glasshouse conditions, tuber treatment and soil application of talc-based formulation of B. subtilis BGS-10 and B. velezensis BGS-21 suppress the root rot incidence with a minimal disease incidence of 27.78% over untreated control. Concurrently, there was a notable induction of defense-related enzymes, including peroxidase (PO), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL), in glory lily. Therefore, it can be concluded that plant growth-promoting Bacillus strains play a significant role in fortifying the plant's defense mechanisms against the root rot pathogen.


Assuntos
Ascomicetos , Bacillus , Bacillus/metabolismo , Bacillus subtilis/metabolismo , Desenvolvimento Vegetal , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
2.
Theor Appl Genet ; 137(1): 1, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071267

RESUMO

KEY MESSAGE: Sr65 in chromosome 1A of Indian wheat landrace Hango-2 is a potentially useful all-stage resistance gene that currently protects wheat from stem rust in Australia, India, Africa and Europe. Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), threatened global wheat production with the appearance of widely virulent races that included TTKSK and TTRTF. Indian landrace Hango-2 showed resistance to Pgt races in India and Australia. Screening of a Hango-2/Avocet 'S' (AvS) recombinant inbred line population identified two stem rust resistance genes, a novel gene (temporarily named as SrH2) from Hango-2 and Sr26 from AvS. A mapping population segregating for SrH2 alone was developed from two recombinant lines. SrH2 was mapped on the short arm of chromosome 1A, where it was flanked by KASP markers KASP_7944 (proximal) and KASP_12147 (distal). SrH2 was delimited to an interval of 1.8-2.3 Mb on chromosome arm 1AS. The failure to detect candidate genes through MutRenSeq and comparative genomic analysis with the pan-genome dataset indicated the necessity to generate a Hango-2 specific assembly for detecting the gene sequence linked with SrH2 resistance. MutRenSeq however enabled identification of SrH2-linked KASP marker sunCS_265. Markers KASP_12147 and sunCS_265 showed 92% and 85% polymorphism among an Australian cereal cultivar diversity panel and can be used for marker-assisted selection of SrH2 in breeding programs. The effectiveness of SrH2 against Pgt races from Europe, Africa, India, and Australia makes it a valuable resource for breeding stem rust-resistant wheat cultivars. Since no wheat-derived gene was previously located in chromosome arm 1AS, SrH2 represents a new locus and named as SR65.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Austrália , Melhoramento Vegetal , Doenças das Plantas/genética
3.
BMC Plant Biol ; 23(1): 590, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008766

RESUMO

BACKGROUND: Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), poses a threat to global wheat production. Deployment of widely effective resistance genes underpins management of this ongoing threat. This study focused on the mapping of stripe rust resistance gene YR63 from a Portuguese hexaploid wheat landrace AUS27955 of the Watkins Collection. RESULTS: YR63 exhibits resistance to a broad spectrum of Pst races from Australia, Africa, Asia, Europe, Middle East and South America. It was mapped to the short arm of chromosome 7B, between two single nucleotide polymorphic (SNP) markers sunCS_YR63 and sunCS_67, positioned at 0.8 and 3.7 Mb, respectively, in the Chinese Spring genome assembly v2.1. We characterised YR63 locus using an integrated approach engaging targeted genotyping-by-sequencing (tGBS), mutagenesis, resistance gene enrichment and sequencing (MutRenSeq), RNA sequencing (RNASeq) and comparative genomic analysis with tetraploid (Zavitan and Svevo) and hexaploid (Chinese Spring) wheat genome references and 10+ hexaploid wheat genomes. YR63 is positioned at a hot spot enriched with multiple nucleotide-binding and leucine rich repeat (NLR) and kinase domain encoding genes, known widely for defence against pests and diseases in plants and animals. Detection of YR63 within these gene clusters is not possible through short-read sequencing due to high homology between members. However, using the sequence of a NLR member we were successful in detecting a closely linked SNP marker for YR63 and validated on a panel of Australian bread wheat, durum and triticale cultivars. CONCLUSIONS: This study highlights YR63 as a valuable source for resistance against Pst in Australia and elsewhere. The closely linked SNP marker will facilitate rapid introgression of YR63 into elite cultivars through marker-assisted selection. The bottleneck of this study reinforces the necessity for a long-read sequencing such as PacBio or Oxford Nanopore based techniques for accurate detection of the underlying resistance gene when it is part of a large gene cluster.


Assuntos
Basidiomycota , Triticum , Mapeamento Cromossômico , Triticum/genética , Resistência à Doença/genética , Austrália , Nucleotídeos , Doenças das Plantas/genética , Basidiomycota/genética
4.
Nat Microbiol ; 8(11): 2130-2141, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37884814

RESUMO

In clonally reproducing dikaryotic rust fungi, non-sexual processes such as somatic nuclear exchange are postulated to play a role in diversity but have been difficult to detect due to the lack of genome resolution between the two haploid nuclei. We examined three nuclear-phased genome assemblies of Puccinia triticina, which causes wheat leaf rust disease. We found that the most recently emerged Australian lineage was derived by nuclear exchange between two pre-existing lineages, which originated in Europe and North America. Haplotype-specific phylogenetic analysis reveals that repeated somatic exchange events have shuffled haploid nuclei between long-term clonal lineages, leading to a global P. triticina population representing different combinations of a limited number of haploid genomes. Thus, nuclear exchange seems to be the predominant mechanism generating diversity and the emergence of new strains in this otherwise clonal pathogen. Such genomics-accelerated surveillance of pathogen evolution paves the way for more accurate global disease monitoring.


Assuntos
Doenças das Plantas , Triticum , Filogenia , Doenças das Plantas/microbiologia , Triticum/microbiologia , Austrália
5.
Nat Commun ; 14(1): 5468, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673864

RESUMO

Leaf rust, caused by Puccinia hordei, is one of the most widespread and damaging foliar diseases affecting barley. The barley leaf rust resistance locus Rph7 has been shown to have unusually high sequence and haplotype divergence. In this study, we isolate the Rph7 gene using a fine mapping and RNA-Seq approach that is confirmed by mutational analysis and transgenic complementation. Rph7 is a pathogen-induced, non-canonical resistance gene encoding a protein that is distinct from other known plant disease resistance proteins in the Triticeae. Structural analysis using an AlphaFold2 protein model suggests that Rph7 encodes a putative NAC transcription factor with a zinc-finger BED domain with structural similarity to the N-terminal DNA-binding domain of the NAC transcription factor (ANAC019) from Arabidopsis. A global gene expression analysis suggests Rph7 mediates the activation and strength of the basal defence response. The isolation of Rph7 highlights the diversification of resistance mechanisms available for engineering disease control in crops.


Assuntos
Arabidopsis , Basidiomycota , Eczema , Hordeum , Fatores de Transcrição/genética , Hordeum/genética , Regulação da Expressão Gênica , Poaceae , Arabidopsis/genética , Proteínas de Plantas/genética , Doenças das Plantas/genética
8.
Phytopathology ; 113(4): 667-677, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36897760

RESUMO

Rust diseases are among the major constraints for wheat production worldwide due to the emergence and spread of highly destructive races of Puccinia. The most common approach to minimize yield losses due to rust is to use cultivars that are genetically resistant. Modern wheat cultivars, landraces, and wild relatives can contain undiscovered resistance genes, which typically encode kinase or nucleotide-binding site leucine rich repeat (NLR) domain containing receptor proteins. Recent research has shown that these genes can provide either resistance in all growth stages (all-stage resistance; ASR) or specially in later growth stages (adult-plant resistance; APR). ASR genes are pathogen and race-specific, meaning can function against selected races of the Puccinia fungus due to the necessity to recognize specific avirulence molecules in the pathogen. APR genes are either pathogen-specific or multipathogen resistant but often race-nonspecific. Prediction of resistance genes through rust infection screening alone remains complex when more than one resistance gene is present. However, breakthroughs during the past half century such as the single-nucleotide polymorphism-based genotyping techniques and resistance gene isolation strategies like mutagenesis, resistance gene enrichment, and sequencing (MutRenSeq), mutagenesis and chromosome sequencing (MutChromSeq), and association genetics combined with RenSeq (AgRenSeq) enables rapid transfer of resistance from source to modern cultivars. There is a strong need for combining multiple genes for better efficacy and longer-lasting resistance. Hence, techniques like gene cassette creation speeds up the gene combination process, but their widespread adoption and commercial use is limited due to their transgenic nature.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Basidiomycota/fisiologia , Fungos
9.
Theor Appl Genet ; 135(12): 4327-4336, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36173416

RESUMO

KEY MESSAGE: Stripe rust resistance gene YrAet672 from Aegilops tauschii accession CPI110672 encodes a nucleotide-binding and leucine-rich repeat domain containing protein similar to YrAS2388 and both these members were haplotypes of Yr28. New sources of host resistance are required to counter the continued emergence of new pathotypes of the wheat stripe rust pathogen Puccinia striiformis Westend. f. sp. tritici Erikss. (Pst). Here, we show that CPI110672, an Aegilops tauschii accession from Turkmenistan, carries a single Pst resistance gene, YrAet672, that is effective against multiple Pst pathotypes, including the four predominant Pst lineages present in Australia. The YRAet672 locus was fine mapped to the short arm of chromosome 4D, and a nucleotide-binding and leucine-rich repeat gene was identified at the locus. A transgene encoding the YrAet672 genomic sequence, but lacking a copy of a duplicated sequence present in the 3' UTR, was transformed into wheat cultivar Fielder and Avocet S. This transgene conferred a weak resistance response, suggesting that the duplicated 3' UTR region was essential for function. Subsequent analyses demonstrated that YrAet672 is the same as two other Pst resistance genes described in Ae. tauschii, namely YrAS2388 and Yr28. They were identified as haplotypes encoding identical protein sequences but are polymorphic in non-translated regions of the gene. Suppression of resistance conferred by YrAet672 and Yr28 in synthetic hexaploid wheat lines (AABBDD) involving Langdon (AABB) as the tetraploid parent was associated with a reduction in transcript accumulation.


Assuntos
Aegilops , Basidiomycota , Aegilops/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Mapeamento Cromossômico , Leucina/genética , Genes de Plantas , Basidiomycota/fisiologia , Poaceae/genética , Nucleotídeos
10.
Essays Biochem ; 66(5): 571-580, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35912968

RESUMO

Adult-plant resistance (APR) is a type of genetic resistance in cereals that is effective during the later growth stages and can protect plants from a range of disease-causing pathogens. Our understanding of the functions of APR-associated genes stems from the well-studied wheat-rust pathosystem. Genes conferring APR can offer pathogen-specific resistance or multi-pathogen resistance, whereby resistance is activated following a molecular recognition event. The breeding community prefers APR to other types of resistance because it offers broad-spectrum protection that has proven to be more durable. In practice, however, deployment of new cultivars incorporating APR is challenging because there is a lack of well-characterised APRs in elite germplasm and multiple loci must be combined to achieve high levels of resistance. Genebanks provide an excellent source of genetic diversity that can be used to diversify resistance factors, but introgression of novel alleles into elite germplasm is a lengthy and challenging process. To overcome this bottleneck, new tools in breeding for resistance must be integrated to fast-track the discovery, introgression and pyramiding of APR genes. This review highlights recent advances in understanding the functions of APR genes in the well-studied wheat-rust pathosystem, the opportunities to adopt APR genes in other crops and the technology that can speed up the utilisation of new sources of APR in genebank accessions.


Assuntos
Basidiomycota , Resistência à Doença , Basidiomycota/genética , Produtos Agrícolas/genética , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Triticum/genética
11.
Theor Appl Genet ; 135(8): 2627-2639, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35748907

RESUMO

KEY MESSAGE: Stem rust resistance genes, SrRL5271 and Sr672.1 as well as SrCPI110651, from Aegilops tauschii, the diploid D genome progenitor of wheat, are sequence variants of Sr46 differing by 1-2 nucleotides leading to non-synonymous amino acid substitutions. The Aegilops tauschii (wheat D-genome progenitor) accessions RL 5271 and CPI110672 were identified as resistant to multiple races (including the Ug99) of the wheat stem rust pathogen Puccinia graminis f. sp. tritici (Pgt). This study was conducted to identify the stem rust resistance (Sr) gene(s) in both accessions. Genetic analysis of the resistance in RL 5271 identified a single dominant allele (SrRL5271) controlling resistance, whereas resistance segregated at two loci (SR672.1 and SR672.2) for a cross of CPI110672. Bulked segregant analysis placed SrRL5271 and Sr672.1 in a region on chromosome arm 2DS that encodes Sr46. Molecular marker screening, mapping and genomic sequence analysis demonstrated SrRL5271 and Sr672.1 are alleles of Sr46. The amino acid sequence of SrRL5271 and Sr672.1 is identical but differs from Sr46 (hereafter referred to as Sr46_h1 by following the gene nomenclature in wheat) by a single amino acid (N763K) and is thus designated Sr46_h2. Screening of a panel of Ae. tauschii accessions identified an additional allelic variant that differed from Sr46_h2 by a different amino acid (A648V) and was designated Sr46_h3. By contrast, the protein encoded by the susceptible allele of Ae. tauschii accession AL8/78 differed from these resistance proteins by 54 amino acid substitutions (94% nucleotide sequence gene identity). Cloning and complementation tests of the three resistance haplotypes confirmed their resistance to Pgt race 98-1,2,3,5,6 and partial resistance to Pgt race TTRTF in bread wheat. The three Sr46 haplotypes, with no virulent races detected yet, represent a valuable source for improving stem resistance in wheat.


Assuntos
Aegilops , Basidiomycota , Aegilops/genética , Aminoácidos , Mapeamento Cromossômico , Cromossomos de Plantas , Diploide , Resistência à Doença/genética , Genes de Plantas , Haplótipos , Doenças das Plantas/genética , Puccinia
12.
Genome Biol ; 23(1): 84, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35337367

RESUMO

BACKGROUND: Most animals and plants have more than one set of chromosomes and package these haplotypes into a single nucleus within each cell. In contrast, many fungal species carry multiple haploid nuclei per cell. Rust fungi are such species with two nuclei (karyons) that contain a full set of haploid chromosomes each. The physical separation of haplotypes in dikaryons means that, unlike in diploids, Hi-C chromatin contacts between haplotypes are false-positive signals. RESULTS: We generate the first chromosome-scale, fully-phased assembly for the dikaryotic leaf rust fungus Puccinia triticina and compare Nanopore MinION and PacBio HiFi sequence-based assemblies. We show that false-positive Hi-C contacts between haplotypes are predominantly caused by phase switches rather than by collapsed regions or Hi-C read mis-mappings. We introduce a method for phasing of dikaryotic genomes into the two haplotypes using Hi-C contact graphs, including a phase switch correction step. In the HiFi assembly, relatively few phase switches occur, and these are predominantly located at haplotig boundaries and can be readily corrected. In contrast, phase switches are widespread throughout the Nanopore assembly. We show that haploid genome read coverage of 30-40 times using HiFi sequencing is required for phasing of the leaf rust genome, with 0.7% heterozygosity, and that HiFi sequencing resolves genomic regions with low heterozygosity that are otherwise collapsed in the Nanopore assembly. CONCLUSIONS: This first Hi-C based phasing pipeline for dikaryons and comparison of long-read sequencing technologies will inform future genome assembly and haplotype phasing projects in other non-haploid organisms.


Assuntos
Nanoporos , Animais , Benchmarking , Genoma , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
13.
Theor Appl Genet ; 135(4): 1355-1373, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35113190

RESUMO

KEY MESSAGE: Multi-year evaluation of the Vavilov wheat diversity panel identified new sources of adult plant resistance to stripe rust. Genome-wide association studies revealed the key genomic regions influencing resistance, including seven novel loci. Wheat stripe rust (YR) caused by Puccinia striiformis f. sp. tritici (Pst) poses a significant threat to global food security. Resistance genes commonly found in many wheat varieties have been rendered ineffective due to the rapid evolution of the pathogen. To identify novel sources of adult plant resistance (APR), 292 accessions from the N.I. Vavilov Institute of Plant Genetic Resources, Saint Petersburg, Russia, were screened for known APR genes (i.e. Yr18, Yr29, Yr46, Yr33, Yr39 and Yr59) using linked polymerase chain reaction (PCR) molecular markers. Accessions were evaluated against Pst (pathotype 134 E16 A + Yr17 + Yr27) at seedling and adult plant stages across multiple years (2014, 2015 and 2016) in Australia. Phenotypic analyses identified 132 lines that potentially carry novel sources of APR to YR. Genome-wide association studies (GWAS) identified 68 significant marker-trait associations (P < 0.001) for YR resistance, representing 47 independent quantitative trait loci (QTL) regions. Fourteen genomic regions overlapped with previously reported Yr genes, including Yr29, Yr56, Yr5, Yr43, Yr57, Yr30, Yr46, Yr47, Yr35, Yr36, Yrxy1, Yr59, Yr52 and YrYL. In total, seven QTL (positioned on chromosomes 1D, 2A, 3A, 3D, 5D, 7B and 7D) did not collocate with previously reported genes or QTL, indicating the presence of promising novel resistance factors. Overall, the Vavilov diversity panel provides a rich source of new alleles which could be used to broaden the genetic bases of YR resistance in modern wheat varieties.


Assuntos
Basidiomycota , Triticum , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Triticum/genética
15.
Nat Commun ; 12(1): 3378, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099713

RESUMO

The re-emergence of stem rust on wheat in Europe and Africa is reinforcing the ongoing need for durable resistance gene deployment. Here, we isolate from wheat, Sr26 and Sr61, with both genes independently introduced as alien chromosome introgressions from tall wheat grass (Thinopyrum ponticum). Mutational genomics and targeted exome capture identify Sr26 and Sr61 as separate single genes that encode unrelated (34.8%) nucleotide binding site leucine rich repeat proteins. Sr26 and Sr61 are each validated by transgenic complementation using endogenous and/or heterologous promoter sequences. Sr61 orthologs are absent from current Thinopyrum elongatum and wheat pan genome sequences, contrasting with Sr26 where homologues are present. Using gene-specific markers, we validate the presence of both genes on a single recombinant alien segment developed in wheat. The co-location of these genes on a small non-recombinogenic segment simplifies their deployment as a gene stack and potentially enhances their resistance durability.


Assuntos
Resistência à Doença/genética , Proteínas NLR/genética , Plantas Geneticamente Modificadas/microbiologia , Puccinia/patogenicidade , Triticum/microbiologia , Cromossomos de Plantas/genética , Genes de Plantas , Engenharia Genética , Marcadores Genéticos , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Caules de Planta/microbiologia , Plantas Geneticamente Modificadas/genética , Puccinia/isolamento & purificação , Triticum/genética
16.
Nat Biotechnol ; 39(5): 561-566, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33398152

RESUMO

Breeding wheat with durable resistance to the fungal pathogen Puccinia graminis f. sp. tritici (Pgt), a major threat to cereal production, is challenging due to the rapid evolution of pathogen virulence. Increased durability and broad-spectrum resistance can be achieved by introducing more than one resistance gene, but combining numerous unlinked genes by breeding is laborious. Here we generate polygenic Pgt resistance by introducing a transgene cassette of five resistance genes into bread wheat as a single locus and show that at least four of the five genes are functional. These wheat lines are resistant to aggressive and highly virulent Pgt isolates from around the world and show very high levels of resistance in the field. The simple monogenic inheritance of this multigene locus greatly simplifies its use in breeding. However, a new Pgt isolate with virulence to several genes at this locus suggests gene stacks will need strategic deployment to maintain their effectiveness.


Assuntos
Basidiomycota/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Basidiomycota/patogenicidade , Mapeamento Cromossômico , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Transgenes/genética , Triticum/microbiologia , Virulência/genética
17.
Plant Biotechnol J ; 19(6): 1206-1215, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33415836

RESUMO

Leaf rust, caused by Puccinia hordei, is a devastating fungal disease affecting barley (Hordeum vulgare subsp. vulgare) production globally. Despite the effectiveness of genetic resistance, the deployment of single genes often compromises durability due to the emergence of virulent P. hordei races, prompting the search for new sources of resistance. Here we report on the cloning of Rph15, a resistance gene derived from barley's wild progenitor H. vulgare subsp. spontaneum. We demonstrate using introgression mapping, mutation and complementation that the Rph15 gene from the near-isogenic line (NIL) Bowman + Rph15 (referred to as BW719) encodes a coiled-coil nucleotide-binding leucine-rich repeat (NLR) protein with an integrated Zinc finger BED (ZF-BED) domain. A predicted KASP marker was developed and validated across a collection of Australian cultivars and a series of introgression lines in the Bowman background known to carry the Rph15 resistance. Rph16 from HS-680, another wild barley derived leaf rust resistance gene, was previously mapped to the same genomic region on chromosome 2H and was assumed to be allelic with Rph15 based on genetic studies. Both sequence analysis, race specificity and the identification of a knockout mutant in the HS-680 background suggest that Rph15- and Rph16-mediated resistances are in fact the same and not allelic as previously thought. The cloning of Rph15 now permits efficient gene deployment and the production of resistance gene cassettes for sustained leaf rust control.


Assuntos
Basidiomycota , Hordeum , Austrália , Basidiomycota/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Hordeum/genética , Doenças das Plantas/genética
18.
Plant Biotechnol J ; 19(2): 273-284, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32744350

RESUMO

In the last 20 years, stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), has re-emerged as a major threat to wheat and barley production in Africa and Europe. In contrast to wheat with 60 designated stem rust (Sr) resistance genes, barley's genetic variation for stem rust resistance is very narrow with only ten resistance genes genetically identified. Of these, only one complex locus consisting of three genes is effective against TTKSK, a widely virulent Pgt race of the Ug99 tribe which emerged in Uganda in 1999 and has since spread to much of East Africa and parts of the Middle East. The objective of this study was to assess the functionality, in barley, of cloned wheat Sr genes effective against race TTKSK. Sr22, Sr33, Sr35 and Sr45 were transformed into barley cv. Golden Promise using Agrobacterium-mediated transformation. All four genes were found to confer effective stem rust resistance. The barley transgenics remained susceptible to the barley leaf rust pathogen Puccinia hordei, indicating that the resistance conferred by these wheat Sr genes was specific for Pgt. Furthermore, these transgenic plants did not display significant adverse agronomic effects in the absence of disease. Cloned Sr genes from wheat are therefore a potential source of resistance against wheat stem rust in barley.


Assuntos
Basidiomycota , Resistência à Doença/genética , Hordeum , Doenças das Plantas/genética , Hordeum/genética , Doenças das Plantas/microbiologia
19.
New Phytol ; 229(5): 2812-2826, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33176001

RESUMO

Pm1a, the first powdery mildew resistance gene described in wheat, is part of a complex resistance (R) gene cluster located in a distal region of chromosome 7AL that has suppressed genetic recombination. A nucleotide-binding, leucine-rich repeat (NLR) immune receptor gene was isolated using mutagenesis and R gene enrichment sequencing (MutRenSeq). Stable transformation confirmed Pm1a identity which induced a strong resistance phenotype in transgenic plants upon challenge with avirulent Blumeria graminis (wheat powdery mildew) pathogens. A high-density genetic map of a B. graminis family segregating for Pm1a avirulence combined with pathogen genome resequencing and RNA sequencing (RNAseq) identified AvrPm1a effector gene candidates. In planta expression identified an effector, with an N terminal Y/FxC motif, that induced a strong hypersensitive response when co-expressed with Pm1a in Nicotiana benthamiana. Single chromosome enrichment sequencing (ChromSeq) and assembly of chromosome 7A suggested that suppressed recombination around the Pm1a region was due to a rearrangement involving chromosomes 7A, 7B and 7D. The cloning of Pm1a and its identification in a highly rearranged region of chromosome 7A provides insight into the role of chromosomal rearrangements in the evolution of this complex resistance cluster.


Assuntos
Ascomicetos , Triticum , Ascomicetos/genética , Cromossomos , Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética
20.
Mol Plant Microbe Interact ; 33(11): 1286-1298, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32779520

RESUMO

In the last 20 years, severe wheat stem rust outbreaks have been recorded in Africa, Europe, and Central Asia. This previously well controlled disease, caused by the fungus Puccinia graminis f. sp. tritici, has reemerged as a major threat to wheat cultivation. The stem rust (Sr) resistance gene Sr22 encodes a nucleotide-binding and leucine-rich repeat receptor which confers resistance to the highly virulent African stem rust isolate Ug99. Here, we show that the Sr22 gene is conserved among grasses in the Triticeae and Poeae lineages. Triticeae species contain syntenic loci with single-copy orthologs of Sr22 on chromosome 7, except Hordeum vulgare, which has experienced major expansions and rearrangements at the locus. We also describe 14 Sr22 sequence variants obtained from both Triticum boeoticum and the domesticated form of this species, T. monococcum, which have been postulated to encode both functional and nonfunctional Sr22 alleles. The nucleotide sequence analysis of these alleles identified historical sequence exchange resulting from recombination or gene conversion, including breakpoints within codons, which expanded the coding potential at these positions by introduction of nonsynonymous substitutions. Three Sr22 alleles were transformed into wheat cultivar Fielder and two postulated resistant alleles from Schomburgk (hexaploid wheat introgressed with T. boeoticum segment carrying Sr22) and T. monococcum accession PI190945, respectively, conferred resistance to P. graminis f. sp. tritici race TTKSK, thereby unequivocally confirming Sr22 effectiveness against Ug99. The third allele from accession PI573523, previously believed to confer susceptibility, was confirmed as nonfunctional against Australian P. graminis f. sp. tritici race 98-1,2,3,5,6.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Basidiomycota/patogenicidade , Resistência à Doença , Doenças das Plantas/genética , Poaceae/genética , Austrália , Mapeamento Cromossômico , Resistência à Doença/genética , Evolução Molecular , Variação Genética , Genômica , Doenças das Plantas/microbiologia , Poaceae/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...