Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(8): 179, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980436

RESUMO

Rust diseases, including leaf rust, stripe/yellow rust, and stem rust, significantly impact wheat (Triticum aestivum L.) yields, causing substantial economic losses every year. Breeding and deployment of cultivars with genetic resistance is the most effective and sustainable approach to control these diseases. The genetic toolkit for wheat breeders to select for rust resistance has rapidly expanded with a multitude of genetic loci identified using the latest advances in genomics, mapping and cloning strategies. The goal of this review was to establish a wheat genome atlas that provides a comprehensive summary of reported loci associated with rust resistance. Our atlas provides a summary of mapped quantitative trait loci (QTL) and characterised genes for the three rusts from 170 publications over the past two decades. A total of 920 QTL or resistance genes were positioned across the 21 chromosomes of wheat based on the latest wheat reference genome (IWGSC RefSeq v2.1). Interestingly, 26 genomic regions contained multiple rust loci suggesting they could have pleiotropic effects on two or more rust diseases. We discuss a range of strategies to exploit this wealth of genetic information to efficiently utilise sources of resistance, including genomic information to stack desirable and multiple QTL to develop wheat cultivars with enhanced resistance to rust disease.


Assuntos
Basidiomycota , Mapeamento Cromossômico , Resistência à Doença , Doenças das Plantas , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Basidiomycota/patogenicidade , Melhoramento Vegetal , Genoma de Planta , Genes de Plantas , Cromossomos de Plantas/genética
2.
Theor Appl Genet ; 135(4): 1355-1373, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35113190

RESUMO

KEY MESSAGE: Multi-year evaluation of the Vavilov wheat diversity panel identified new sources of adult plant resistance to stripe rust. Genome-wide association studies revealed the key genomic regions influencing resistance, including seven novel loci. Wheat stripe rust (YR) caused by Puccinia striiformis f. sp. tritici (Pst) poses a significant threat to global food security. Resistance genes commonly found in many wheat varieties have been rendered ineffective due to the rapid evolution of the pathogen. To identify novel sources of adult plant resistance (APR), 292 accessions from the N.I. Vavilov Institute of Plant Genetic Resources, Saint Petersburg, Russia, were screened for known APR genes (i.e. Yr18, Yr29, Yr46, Yr33, Yr39 and Yr59) using linked polymerase chain reaction (PCR) molecular markers. Accessions were evaluated against Pst (pathotype 134 E16 A + Yr17 + Yr27) at seedling and adult plant stages across multiple years (2014, 2015 and 2016) in Australia. Phenotypic analyses identified 132 lines that potentially carry novel sources of APR to YR. Genome-wide association studies (GWAS) identified 68 significant marker-trait associations (P < 0.001) for YR resistance, representing 47 independent quantitative trait loci (QTL) regions. Fourteen genomic regions overlapped with previously reported Yr genes, including Yr29, Yr56, Yr5, Yr43, Yr57, Yr30, Yr46, Yr47, Yr35, Yr36, Yrxy1, Yr59, Yr52 and YrYL. In total, seven QTL (positioned on chromosomes 1D, 2A, 3A, 3D, 5D, 7B and 7D) did not collocate with previously reported genes or QTL, indicating the presence of promising novel resistance factors. Overall, the Vavilov diversity panel provides a rich source of new alleles which could be used to broaden the genetic bases of YR resistance in modern wheat varieties.


Assuntos
Basidiomycota , Triticum , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Triticum/genética
3.
Mol Plant Microbe Interact ; 33(11): 1286-1298, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32779520

RESUMO

In the last 20 years, severe wheat stem rust outbreaks have been recorded in Africa, Europe, and Central Asia. This previously well controlled disease, caused by the fungus Puccinia graminis f. sp. tritici, has reemerged as a major threat to wheat cultivation. The stem rust (Sr) resistance gene Sr22 encodes a nucleotide-binding and leucine-rich repeat receptor which confers resistance to the highly virulent African stem rust isolate Ug99. Here, we show that the Sr22 gene is conserved among grasses in the Triticeae and Poeae lineages. Triticeae species contain syntenic loci with single-copy orthologs of Sr22 on chromosome 7, except Hordeum vulgare, which has experienced major expansions and rearrangements at the locus. We also describe 14 Sr22 sequence variants obtained from both Triticum boeoticum and the domesticated form of this species, T. monococcum, which have been postulated to encode both functional and nonfunctional Sr22 alleles. The nucleotide sequence analysis of these alleles identified historical sequence exchange resulting from recombination or gene conversion, including breakpoints within codons, which expanded the coding potential at these positions by introduction of nonsynonymous substitutions. Three Sr22 alleles were transformed into wheat cultivar Fielder and two postulated resistant alleles from Schomburgk (hexaploid wheat introgressed with T. boeoticum segment carrying Sr22) and T. monococcum accession PI190945, respectively, conferred resistance to P. graminis f. sp. tritici race TTKSK, thereby unequivocally confirming Sr22 effectiveness against Ug99. The third allele from accession PI573523, previously believed to confer susceptibility, was confirmed as nonfunctional against Australian P. graminis f. sp. tritici race 98-1,2,3,5,6.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Basidiomycota/patogenicidade , Resistência à Doença , Doenças das Plantas/genética , Poaceae/genética , Austrália , Mapeamento Cromossômico , Resistência à Doença/genética , Evolução Molecular , Variação Genética , Genômica , Doenças das Plantas/microbiologia , Poaceae/microbiologia
4.
Theor Appl Genet ; 131(1): 127-144, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28980023

RESUMO

KEY MESSAGE: Thirteen potentially new leaf rust resistance loci were identified in a Vavilov wheat diversity panel. We demonstrated the potential of allele stacking to strengthen resistance against this important pathogen. Leaf rust (LR) caused by Puccinia triticina is an important disease of wheat (Triticum aestivum L.), and the deployment of genetically resistant cultivars is the most viable strategy to minimise yield losses. In this study, we evaluated a diversity panel of 295 bread wheat accessions from the N. I. Vavilov Institute of Plant Genetic Resources (St Petersburg, Russia) for LR resistance and performed genome-wide association studies (GWAS) using 10,748 polymorphic DArT-seq markers. The diversity panel was evaluated at seedling and adult plant growth stages using three P. triticina pathotypes prevalent in Australia. GWAS was applied to 11 phenotypic data sets which identified a total of 52 significant marker-trait associations representing 31 quantitative trait loci (QTL). Among them, 29 QTL were associated with adult plant resistance (APR). Of the 31 QTL, 13 were considered potentially new loci, whereas 4 co-located with previously catalogued Lr genes and 14 aligned to regions reported in other GWAS and genomic prediction studies. One seedling LR resistance QTL located on chromosome 3A showed pronounced levels of linkage disequilibrium among markers (r 2 = 0.7), suggested a high allelic fixation. Subsequent haplotype analysis for this region found seven haplotype variants, of which two were strongly associated with LR resistance at seedling stage. Similarly, analysis of an APR QTL on chromosome 7B revealed 22 variants, of which 4 were associated with resistance at the adult plant stage. Furthermore, most of the tested lines in the diversity panel carried 10 or more combined resistance-associated marker alleles, highlighting the potential of allele stacking for long-lasting resistance.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Alelos , Austrália , Basidiomycota , Genes de Plantas , Estudos de Associação Genética , Variação Genética , Haplótipos , Desequilíbrio de Ligação , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Triticum/microbiologia
5.
Nat Biotechnol ; 34(6): 652-5, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27111722

RESUMO

Wild relatives of domesticated crop species harbor multiple, diverse, disease resistance (R) genes that could be used to engineer sustainable disease control. However, breeding R genes into crop lines often requires long breeding timelines of 5-15 years to break linkage between R genes and deleterious alleles (linkage drag). Further, when R genes are bred one at a time into crop lines, the protection that they confer is often overcome within a few seasons by pathogen evolution. If several cloned R genes were available, it would be possible to pyramid R genes in a crop, which might provide more durable resistance. We describe a three-step method (MutRenSeq)-that combines chemical mutagenesis with exome capture and sequencing for rapid R gene cloning. We applied MutRenSeq to clone stem rust resistance genes Sr22 and Sr45 from hexaploid bread wheat. MutRenSeq can be applied to other commercially relevant crops and their relatives, including, for example, pea, bean, barley, oat, rye, rice and maize.


Assuntos
Clonagem Molecular/métodos , Resistência à Doença/genética , Genes de Plantas/genética , Mutagênese Sítio-Dirigida/métodos , Doenças das Plantas/genética , Plantas/genética , Melhoramento Genético/métodos , Doenças das Plantas/prevenção & controle , Plantas Geneticamente Modificadas/genética , Análise de Sequência de DNA/métodos
6.
Methods Mol Biol ; 1127: 159-72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24643560

RESUMO

An accurate assessment of the disease resistance status of plants to fungal pathogens is an essential requirement for the development of resistant crop plants. Many disease resistance phenotypes are partial rather than obvious immunity and are frequently scored using subjective qualitative estimates of pathogen development or plant disease symptoms. Here we report a method for the accurate comparison of total fungal biomass in plant tissues. This method, called the WAC assay, is based upon the specific binding of the plant lectin wheat germ agglutinin to fungal chitin. The assay is simple, high-throughput, and sensitive enough to discriminate between single Puccinia graminis f.sp tritici infection sites on a wheat leaf segment. It greatly lends itself to replication as large volumes of tissue can be pooled from independent experiments and assayed to provide truly representative quantification, or, alternatively, fungal growth on a single, small leaf segment can be quantified. In addition, as the assay is based upon a microscopic technique, pathogen infection sites can also be examined at high magnification prior to quantification if desired and average infection site areas are determined. Previously, we have demonstrated the application of the WAC assay for quantifying the growth of several different pathogen species in both glasshouse grown material and large-scale field plots. Details of this method are provided within.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Bioensaio/métodos , Biomassa , Triticum/microbiologia , Quitina/metabolismo , Fluoresceína-5-Isotiocianato/metabolismo , Genótipo , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Padrões de Referência , Plântula/microbiologia , Coloração e Rotulagem , Triticum/genética , Aglutininas do Germe de Trigo/metabolismo
7.
Mol Plant Microbe Interact ; 26(6): 658-67, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23405866

RESUMO

Plant phenotypes resistant and susceptible to fungal pathogens are usually scored using qualitative, subjective methods that are based upon disease symptoms or by an estimation of the amount of visible fungal growth. Given that plant resistance genes often confer partial resistance to fungal pathogens, a simple, sensitive, nonsubjective quantitative method for measuring pathogen growth would be highly advantageous. This report describes an in planta quantitative assay for fungal biomass based upon detection of chitin using wheat germ agglutinin conjugated to a fluorophore. Using this assay, the growth of wheat rust pathogens on wheat was assayed and the additivity of several adult plant and seedling resistance genes to Puccinia striiformis, P. graminis, and P. triticina was assayed on both glasshouse- and field-grown material. The assay can discriminate between individual rust pustules on a leaf segment or, alternatively, compare fungal growth on field plots. The quantification of Erysiphe necator (powdery mildew) growth on Vitis vinifera (grapevine) is also demonstrated, with resistant and susceptible cultivars readily distinguished. Given that chitin is a major cell wall component of many plant fungal pathogens, this robust assay will enable simple and accurate measurement of biomass accumulation in many plant-fungus interactions.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Basidiomycota/crescimento & desenvolvimento , Quitina/análise , Doenças das Plantas/microbiologia , Triticum/microbiologia , Vitis/microbiologia , Ascomicetos/patogenicidade , Basidiomycota/patogenicidade , Biomassa , Fluoresceína-5-Isotiocianato/análise , Genótipo , Microscopia de Fluorescência , Fenótipo , Imunidade Vegetal , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Padrões de Referência , Reprodutibilidade dos Testes , Plântula/imunologia , Plântula/microbiologia , Sensibilidade e Especificidade , Fatores de Tempo , Triticum/imunologia , Aglutininas do Germe de Trigo/análise
8.
Theor Appl Genet ; 124(8): 1475-86, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22297565

RESUMO

The common wheat cultivar Parula possesses a high level of slow rusting, adult plant resistance (APR) to all three rust diseases of wheat. Previous mapping studies using an Avocet-YrA/Parula recombinant inbred line (RIL) population showed that APR to leaf rust (Puccinia triticina) in Parula is governed by at least three independent slow rusting resistance genes: Lr34 on 7DS, Lr46 on 1BL, and a previously unknown gene on 7BL. The use of field rust reaction and flanking markers identified two F(6) RILs, Arula1 and Arula2, from the above population that lacked Lr34 and Lr46 but carried the leaf rust resistance gene in 7BL, hereby designated Lr68. Arula1 and Arula2 were crossed with Apav, a highly susceptible line from the cross Avocet-YrA/Pavon 76, and 396 F(4)-derived F(5) RILs were developed for mapping Lr68. The RILs were phenotyped for leaf rust resistance for over 2 years in Ciudad Obregon, Mexico, with a mixture of P. triticina races MBJ/SP and MCJ/SP. Close genetic linkages with several DNA markers on 7BL were established using 367 RILs; Psy1-1 and gwm146 flanked Lr68 and were estimated at 0.5 and 0.6 cM, respectively. The relationship between Lr68 and the race-specific seedling resistance gene Lr14b, located in the same region and present in Parula, Arula1 and Arula2, was investigated by evaluating the RILs with Lr14b-avirulent P. triticina race TCT/QB in the greenhouse. Although Lr14b and Lr68 homozygous recombinants in repulsion were not identified in RILs, γ-irradiation-induced deletion stocks that lacked Lr68 but possessed Lr14b showed that Lr68 and Lr14b are different loci. Flanking DNA markers that are tightly linked to Lr68 in a wide array of genotypes can be utilized for selection of APR to leaf rust.


Assuntos
Marcadores Genéticos , Triticum/genética , Alelos , Mapeamento Cromossômico , Cruzamentos Genéticos , Deleção de Genes , Genes de Plantas , Ligação Genética , Marcadores Genéticos/genética , Haplótipos , Homozigoto , Modelos Genéticos , Modelos Estatísticos , Mutação , Necrose , Fenótipo , Doenças das Plantas/genética , Folhas de Planta/metabolismo , Locos de Características Quantitativas , Análise de Sequência de DNA
9.
Theor Appl Genet ; 122(1): 1-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20680609

RESUMO

Stem rust resistance gene Sr22 transferred to common wheat from Triticum boeoticum and T. monococcum remains effective against commercially prevalent pathotypes of Puccinia graminis f. sp. tritici, including Ug99 and its derivatives. Sr22 was previously located on the long arm of chromosome 7A. Several backcross derivatives (hexaploid) possessing variable sized Sr22-carrying segments were used in this study to identify a closely linked DNA marker. Expressed sequenced tags belonging to the deletion bin 7AL-0.74-0.86, corresponding to the genomic location of Sr22 were screened for polymorphism. In addition, RFLP markers that mapped to this region were targeted. Initial screening was performed on the resistant and susceptible DNA bulks obtained from backcross derivatives carrying Sr22 in three genetic backgrounds with short T. boeoticum segments. A cloned wheat genomic fragment, csIH81, that detected RFLPs between the resistant and susceptible bulks, was converted into a sequence tagged site (STS) marker, named cssu22. Validation was performed on Sr22 carrying backcross-derivatives in fourteen genetic backgrounds and other genotypes used for marker development. Marker cssu22 distinguished all backcross-derivatives from their respective recurrent parents and co-segregated with Sr22 in a Schomburgk (+Sr22)/Yarralinka (-Sr22)-derived recombinant inbred line (RIL) population. Sr22 was also validated in a second population, Sr22TB/Lakin-derived F(4) selected families, containing shortened introgressed segments that showed recombination with previously reported flanking microsatellite markers.


Assuntos
Basidiomycota/fisiologia , Genes de Plantas/genética , Imunidade Inata/genética , Endogamia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , DNA de Plantas/genética , Marcadores Genéticos , Genótipo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Recombinação Genética/genética , Reprodutibilidade dos Testes , Triticum/imunologia , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...