Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(39): 90328-90340, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36520297

RESUMO

Hexavalent chromium (Cr(VI)) is carcinogenic to organisms. It is widely used in several industries. In this work, we investigated the Cr(VI) photocatalytic reaction with a scavenger on Pt and Cu-TiO2 photocatalysts. Metal-deposited TiO2 was successfully synthesized by a photodeposition method. TEM-EDX, XRD, and UV-DR were analyzed to study the changes in morphology, crystallinity, and the electronic properties of photocatalysts. The rate of charge recombination during reduction and photoluminescence (PL) spectroscopy was used to examine the catalysts in depth. Cu-TiO2 demonstrates the highest photocatalytic activity for 63.74% of Cr(VI) removal. To understand the photoreduction of Cr(VI), the fate transformation of Cr species during the adsorption and reaction was investigated using in situ XANES. The results demonstrated that the Cr(III) was noticeably main component adsorbed over the catalyst, particularly in Cu-TiO2. The presence of humic acid can boost the Cr(VI) removal efficiency and enhanced the Cr(VI) reduction to Cr(III). We believe that the extensive research on Cr(VI) photoreduction on metal-TiO2 heterojunction will provide a comprehensive understanding of catalytic behaviors, paving the way for rationally designed novel Cr reduction catalysts.


Assuntos
Cromo , Nanopartículas Metálicas , Oxirredução , Cromo/química , Titânio/química , Catálise
2.
Nanomaterials (Basel) ; 12(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35159819

RESUMO

The photocatalytic reduction of carbon dioxide (CO2) into value-added chemicals is considered to be a green and sustainable technology, and has recently gained considerable research interest. In this work, titanium dioxide (TiO2) supported Pt, Pd, Ni, and Cu catalysts were synthesized by photodeposition. The formation of various metal species on an anatase TiO2 surface, after ultraviolet (UV) light irradiation, was investigated insightfully by the X-ray absorption near edge structure (XANES) technique. CO2 reduction under UV-light irradiation at an ambient pressure was demonstrated. To gain an insight into the charge recombination rate during reduction, the catalysts were carefully investigated by the intensity modulated photocurrent spectroscopy (IMPS) and photoluminescence spectroscopy (PL). The catalytic behaviors of the catalysts were investigated by density functional theory using the self-consistent Hubbard U-correction (DFT+U) approach. In addition, Mott-Schottky measurement was employed to study the effect of energy band alignment of metal-semiconductor on CO2 photoreduction. Heterojunction formed at Pt-, Pd-, Ni-, and Cu-TiO2 interface has crucial roles on the charge recombination and the catalytic behaviors. Furthermore, it was found that Pt-TiO2 provides the highest methanol yield of 17.85 µmol/gcat/h, and CO as a minor product. According to the IMPS data, Pt-TiO2 has the best charge transfer ability, with the mean electron transit time of 4.513 µs. We believe that this extensive study on the junction between TiO2 could provide a profound understanding of catalytic behaviors, which will pave the way for rational designs of novel catalysts with improved photocatalytic performance for CO2 reduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA