Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Vis Exp ; (181)2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35389978

RESUMO

Primary cilia (PC) are non-motile dynamic microtubule-based organelles that protrude from the surface of most mammalian cells. They emerge from the older centriole during the G1/G0 phase of the cell cycle, while they disassemble as the cells re-enter the cell cycle at the G2/M phase boundary. They function as signal hubs, by detecting and transducing extracellular signals crucial for many cell processes. Similar to most cell types, all neocortical neural stem and progenitor cells (NSPCs) have been shown harboring a PC allowing them to sense and transduce specific signals required for the normal cerebral cortical development. Here, we provide detailed protocols to generate and characterize two-dimensional (2D) and three-dimensional (3D) cell-based models from human induced pluripotent stem cells (hIPSCs) to further dissect the involvement of PC during neocortical development. In particular, we present protocols to study the PC biogenesis and function in 2D neural rosette-derived NSPCs including the transduction of the Sonic Hedgehog (SHH) pathway. To take advantage of the three-dimensional (3D) organization of cerebral organoids, we describe a simple method for 3D imaging of in toto immunostained cerebral organoids. After optical clearing, rapid acquisition of entire organoids allows detection of both centrosomes and PC on neocortical progenitors and neurons of the whole organoid. Finally, we detail the procedure for immunostaining and clearing of thick free-floating organoid sections preserving a significant degree of 3D spatial information and allowing for the high-resolution acquisition required for the detailed qualitative and quantitative analysis of PC biogenesis and function.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neocórtex , Animais , Diferenciação Celular/fisiologia , Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Mamíferos/metabolismo , Organoides/metabolismo
2.
Cell Rep ; 23(13): 3813-3826, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949766

RESUMO

Lysosome membrane recycling occurs at the end of the autophagic pathway and requires proteins that are mostly encoded by genes mutated in neurodegenerative diseases. However, its implication in neuronal death is still unclear. Here, we show that spatacsin, which is required for lysosome recycling and whose loss of function leads to hereditary spastic paraplegia 11 (SPG11), promotes clearance of gangliosides from lysosomes in mouse and human SPG11 models. We demonstrate that spatacsin acts downstream of clathrin and recruits dynamin to allow lysosome membrane recycling and clearance of gangliosides from lysosomes. Gangliosides contributed to the accumulation of autophagy markers in lysosomes and to neuronal death. In contrast, decreasing ganglioside synthesis prevented neurodegeneration and improved motor phenotype in a SPG11 zebrafish model. Our work reveals how inhibition of lysosome membrane recycling leads to the deleterious accumulation of gangliosides, linking lysosome recycling to neurodegeneration.


Assuntos
Gangliosídeos/metabolismo , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Animais , Autofagia/efeitos dos fármacos , Feminino , Ácido Glutâmico/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Lisossomos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Proteínas/genética , Proteínas/metabolismo , Paraplegia Espástica Hereditária/metabolismo , Paraplegia Espástica Hereditária/patologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
3.
EBioMedicine ; 9: 293-305, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27333044

RESUMO

Autism spectrum disorders affect millions of individuals worldwide, but their heterogeneity complicates therapeutic intervention that is essentially symptomatic. A versatile yet relevant model to rationally screen among hundreds of therapeutic options would help improving clinical practice. Here we investigated whether neurons differentiated from pluripotent stem cells can provide such a tool using SHANK3 haploinsufficiency as a proof of principle. A library of compounds was screened for potential to increase SHANK3 mRNA content in neurons differentiated from control human embryonic stem cells. Using induced pluripotent stem cell technology, active compounds were then evaluated for efficacy in correcting dysfunctional networks of neurons differentiated from individuals with deleterious point mutations of SHANK3. Among 202 compounds tested, lithium and valproic acid showed the best efficacy at corrected SHANK3 haploinsufficiency associated phenotypes in cellulo. Lithium pharmacotherapy was subsequently provided to one patient and, after one year, an encouraging decrease in autism severity was observed. This demonstrated that pluripotent stem cell-derived neurons provide a novel cellular paradigm exploitable in the search for specific disease-modifying treatments.


Assuntos
Transtorno do Espectro Autista/patologia , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Células-Tronco Pluripotentes/citologia , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Diferenciação Celular , Células Cultivadas , Haploinsuficiência/efeitos dos fármacos , Células-Tronco Embrionárias Humanas , Humanos , Lítio/farmacologia , Lítio/uso terapêutico , Masculino , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/citologia , Fenótipo , Células-Tronco Pluripotentes/metabolismo , RNA Mensageiro/metabolismo , Índice de Gravidade de Doença , Transcriptoma/efeitos dos fármacos , Ácido Valproico/farmacologia
4.
Hum Mol Genet ; 21(4): 765-75, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22068586

RESUMO

ABCA3 (ATP-binding cassette subfamily A, member 3) is expressed in the lamellar bodies of alveolar type II cells and is crucial to pulmonary surfactant storage and homeostasis. ABCA3 gene mutations have been associated with neonatal respiratory distress (NRD) and pediatric interstitial lung disease (ILD). The objective of this study was to look for ABCA3 gene mutations in patients with severe NRD and/or ILD. The 30 ABCA3 coding exons were screened in 47 patients with severe NRD and/or ILD. ABCA3 mutations were identified in 10 out of 47 patients, including 2 homozygous, 5 compound heterozygous and 3 heterozygous patients. SP-B and SP-C expression patterns varied across patients. Among patients with ABCA3 mutations, five died shortly after birth and five developed ILD (including one without NRD). Functional studies of p.D253H and p.T1173R mutations revealed that p.D253H and p.T1173R induced abnormal lamellar bodies. Additionally, p.T1173R increased IL-8 secretion in vitro. In conclusion, we identified new ABCA3 mutations in patients with life-threatening NRD and/or ILD. Two mutations associated with ILD acted via different pathophysiological mechanisms despite similar clinical phenotypes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/patologia , Mutação/genética , Líquido da Lavagem Broncoalveolar/química , Criança , Citocinas/biossíntese , Feminino , Humanos , Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/fisiopatologia , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...