Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 225: 1588-1598, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435467

RESUMO

Thermophilic members of the genus Aneurinibacillus constitute a remarkable group of microorganisms that exhibit extraordinary flexibility in terms of polyhydroxyalkanoates (PHA) synthesis. In this study, we demonstrate that these Gram-positive bacteria are capable of the utilization of selected lactones, namely, γ-valerolactone (GVL), γ-hexalactone (GHL), and δ-valerolactone (DVL) as the structural precursors of related PHA monomers. In the presence of GVL, a PHA copolymer consisting of 3-hydroxybutyrate, 3-hydroxyvalerate, and also 4-hydroxyvalerate was synthesized, with a 4 HV fraction as high as 53.1 mol%. Similarly, the application of GHL resulted in the synthesis of PHA copolymer containing 4-hydroxyhexanaote (4HHx) (4HHx fraction reached up to 11.5 mol%) and DVL was incorporated into PHA in form of 5-hydroxyvalerate (5 HV) (maximal 5 HV content was 44.2 mol%). The produced materials were characterized by thermoanalytical and spectroscopic methods; the results confirmed extremely appealing material properties of produced copolymers. Further, due to their unique metabolic features and capability of incorporating various PHA monomers into the PHA chain, thermophilic Aneurinibacillus spp. can be considered not only promising chassis for PHA production but also potential donors of PHA-relevant genes to improve PHA production in other thermophiles by using approaches of synthetic biology.


Assuntos
Bacillales , Poli-Hidroxialcanoatos , Fermentação , Poliésteres
2.
Appl Microbiol Biotechnol ; 106(12): 4669-4681, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35759037

RESUMO

Aneurinibacillus thermoaerophilus CCM 8960 is a thermophilic bacterium isolated from compost in Brno. The bacterium accumulates polyhydroxyalkanoates (PHAs), a biodegradable and renewable alternative to petrochemical polymers. The bacterium reveals several features that make it a very interesting candidate for the industrial production of PHA. At first, due to its thermophilic character, the bacterium can be utilized in agreement with the concept of next-generation industrial biotechnology (NGIB), which relies on extremophiles. Second, the bacterium is capable of producing PHA copolymers containing a very high portion of 4-hydroxybutyrate (4HB). Such materials possess unique properties and can be advantageously used in multiple applications, including but not limited to medicine and healthcare. Therefore, this work focuses on the in-depth characterization of A. thermoaerophilus CCM 8960. In particular, we sequenced and assembled the genome of the bacterium and identified its most important genetic features, such as the presence of plasmids, prophages, CRISPR arrays, antibiotic-resistant genes, and restriction-modification (R-M) systems, which might be crucial for the development of genome editing tools. Furthermore, we focused on genes directly involved in PHA metabolism. We also experimentally studied the kinetics of glycerol and 1,4-butanediol (1,4BD) utilization as well as biomass growth and PHA production during cultivation. Based on these data, we constructed a metabolic model to reveal metabolic fluxes and nodes of glycerol and 1,4BD concerning their incorporation into the poly(3-hydroxybutyrate-co-4-hydroxybutyrate (P(3HB-co-4HB)) structure. KEY POINTS: • Aneurinibacillus sp. H1 was identified as Aneurinibacillus thermoaerophilus. • PHA metabolism pathway with associated genes was presented. • Unique monomer composition of produced PHAs was reported.


Assuntos
Poli-Hidroxialcanoatos , Ácido 3-Hidroxibutírico , Bacillales , Butileno Glicóis , Glicerol , Poliésteres/metabolismo
3.
Biotechnol Adv ; 58: 107906, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35033587

RESUMO

Polyhydroxyalkanoates (PHA) are microbial polyesters produced by numerous prokaryotes. These materials are generally considered to be renewable and biodegradable alternatives to petrochemical polymers in numerous applications. PHA are accumulated by microbial cells in form of intracellular granules primarily as storage compounds; nevertheless, numerous recent reports also highlight the importance of PHA for the stress robustness of bacteria. Therefore, in this review, we focus on summarizing current knowledge on PHA accumulation in halophiles and thermophiles - prokaryotic microorganisms adapted to high salinity and high temperature, respectively. Utilization of extremophiles for PHA production brings numerous benefits stemming especially from the enhanced robustness of the process against contamination by common mesophilic microflora as a basement of the Next-Generation Industrial Biotechnology concept. Further, recent advances and future perspectives in metabolic engineering and synthetic biology of halophiles and thermophiles for PHA production improvement are also summarized and suggested. Facts and ideas gathered in this review hold a promise that biotechnological production of PHA by extremophiles can be sustainable and economically feasible enabling PHA to enter the market massively and compete with non-biodegradable petrochemical polymers in suitable applications.


Assuntos
Poli-Hidroxialcanoatos , Bactérias/genética , Bactérias/metabolismo , Biotecnologia , Temperatura Alta , Engenharia Metabólica , Poli-Hidroxialcanoatos/metabolismo
4.
Genome Biol Evol ; 13(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34908127

RESUMO

Tepidimonas taiwanensis is a moderately thermophilic, Gram-negative, rod-shaped, chemoorganoheterotrophic, motile bacterium. The alkaline protease producing type strain T. taiwanensis LMG 22826T was recently reported to also be a promising producer of polyhydroxyalkanoates (PHAs)-renewable and biodegradable polymers representing an alternative to conventional plastics. Here, we present its first complete genome sequence which is also the first complete genome sequence of the whole species. The genome consists of a single 2,915,587-bp-long circular chromosome with GC content of 68.75%. Genome annotation identified 2,764 genes in total while 2,634 open reading frames belonged to protein-coding genes. Although functional annotation of the genome and division of genes into Clusters of Orthologous Groups (COGs) revealed a relatively high number of 694 genes with unknown function or unknown COG, the majority of genes were assigned a function. Most of the genes, 406 in total, were involved in energy production and conversion, and amino acid transport and metabolism. Moreover, particular key genes involved in the metabolism of PHA were identified. Knowledge of the genome in connection with the recently reported ability to produce bioplastics from the waste stream of wine production makes T. taiwanensis LMG 22826T, an ideal candidate for further genome engineering as a bacterium with high biotechnological potential.


Assuntos
Burkholderiales , Poli-Hidroxialcanoatos , Proteínas de Bactérias , Burkholderiales/genética , Endopeptidases , Poli-Hidroxialcanoatos/genética , Análise de Sequência de DNA
5.
Bioengineering (Basel) ; 8(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34677214

RESUMO

Polyhydroxyalkanoates (PHA) are microbial polyesters that have recently come to the forefront of interest due to their biodegradability and production from renewable sources. A potential increase in competitiveness of PHA production process comes with a combination of the use of thermophilic bacteria with the mutual use of waste substrates. In this work, the thermophilic bacterium Tepidimonas taiwanensis LMG 22826 was identified as a promising PHA producer. The ability to produce PHA in T. taiwanensis was studied both on genotype and phenotype levels. The gene encoding the Class I PHA synthase, a crucial enzyme in PHA synthesis, was detected both by genome database search and by PCR. The microbial culture of T. taiwanensis was capable of efficient utilization of glucose and fructose. When cultivated on glucose as the only carbon source at 50 °C, the PHA titers reached up to 3.55 g/L, and PHA content in cell dry mass was 65%. The preference of fructose and glucose opens the possibility to employ T. taiwanensis for PHA production on various food wastes rich in these abundant sugars. In this work, PHA production on grape pomace extracts was successfully tested.

6.
Microorganisms ; 9(5)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923216

RESUMO

Actinobacteria belonging to the genus Rubrobacter are known for their multi-extremophilic growth conditions-they are highly radiation-resistant, halotolerant, thermotolerant or even thermophilic. This work demonstrates that the members of the genus are capable of accumulating polyhydroxyalkanoates (PHA) since PHA-related genes are widely distributed among Rubrobacter spp. whose complete genome sequences are available in public databases. Interestingly, all Rubrobacter strains possess both class I and class III synthases (PhaC). We have experimentally investigated the PHA accumulation in two thermophilic species, R. xylanophilus and R. spartanus. The PHA content in both strains reached up to 50% of the cell dry mass, both bacteria were able to accumulate PHA consisting of 3-hydroxybutyrate and 3-hydroxyvalerate monomeric units, none other monomers were incorporated into the polymer chain. The capability of PHA accumulation likely contributes to the multi-extremophilic characteristics since it is known that PHA substantially enhances the stress robustness of bacteria. Hence, PHA can be considered as extremolytes enabling adaptation to extreme conditions. Furthermore, due to the high PHA content in biomass, a wide range of utilizable substrates, Gram-stain positivity, and thermophilic features, the Rubrobacter species, in particular Rubrobacter xylanophilus, could be also interesting candidates for industrial production of PHA within the concept of Next-Generation Industrial Biotechnology.

7.
Bioresour Technol ; 315: 123885, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32721829

RESUMO

The aim of this work was to investigate the thermophilic bacterium Schelegelella thermodepolymerans DSM 15344 in terms of its polyhydroxyalkanoates (PHA) biosynthesis capacity. The bacterium is capable of converting various sugars into PHA with the optimal growth temperature of 55 °C; therefore, the process of PHA biosynthesis could be robust against contamination. Surprisingly, the highest yield was gained on xylose. Results suggested that S. thermodepolymerans possess unique xylose metabolism since xylose is utilized preferentially with the highest consumption rate as compared to other sugars. In the genome of S. thermodepolymerans DSM 15344, a unique putative xyl operon consisting of genes responsible for xylose utilization and also for its transport was identified, which is a unique feature among PHA producers. The bacterium is capable of biosynthesis of copolymers containing 3-hydroxybutyrate and also 3-hydroxyvalerate subunits. Hence, S.thermodepolymerans seems to be promising candidate for PHA production from xylose rich substrates.


Assuntos
Comamonadaceae , Poli-Hidroxialcanoatos , Ácido 3-Hidroxibutírico , Xilose
8.
Polymers (Basel) ; 12(6)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517027

RESUMO

Aneurinibacillus sp. H1 is a promising, moderately thermophilic, novel Gram-positive bacterium capable of the biosynthesis of polyhydroxyalkanoates (PHA) with tunable monomer composition. In particular, the strain is able to synthesize copolymers of 3-hydroxybutyrate (3HB), 4-hydroxybutyrate (4HB) and 3-hydroxyvalerate (3HV) with remarkably high 4HB and 3HV fractions. In this study we performed an in-depth material analysis of PHA polymers produced by Aneurinibacillus sp. H1 in order to describe how the monomer composition affects fundamental structural and physicochemical parameters of the materials in the form of solvent-casted films. Results of infrared spectroscopy, X-ray diffractometry and thermal analysis clearly show that controlling the monomer composition enables optimization of PHA crystallinity both qualitatively (the type of the crystalline lattice) and quantitatively (the overall degree of crystallinity). Furthermore, resistance of the films against thermal and/or enzymatic degradation can also be manipulated by the monomer composition. Results of this study hence confirm Aneurinibacillus sp. H1 as an auspicious candidate for thermophilic production of PHA polymers with material properties that can be tuned together with their chemical composition by the corresponding adjustment of the cultivation process.

9.
Polymers (Basel) ; 12(6)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485983

RESUMO

Extremophilic microorganisms are considered being very promising candidates for biotechnological production of various products including polyhydroxyalkanoates (PHA). The aim of this work was to evaluate the PHA production potential of a novel PHA-producing thermophilic Gram-positive isolate Aneurinibacillus sp. H1. This organism was capable of efficient conversion of glycerol into poly(3-hydroxybutyrate) (P3HB), the homopolyester of 3-hydroxybutyrate (3HB). In flasks experiment, under optimal cultivation temperature of 45 °C, the P3HB content in biomass and P3HB titers reached 55.31% of cell dry mass and 2.03 g/L, respectively. Further, the isolate was capable of biosynthesis of PHA copolymers and terpolymers containing high molar fractions of 3-hydroxyvalerate (3HV) and 4-hydroxybutyrate (4HB). Especially 4HB contents in PHA were very high (up to 91 mol %) when 1,4-butanediol was used as a substrate. Based on these results, it can be stated that Aneurinibacillus sp. H1 is a very promising candidate for production of PHA with tailored material properties.

10.
Int J Biol Macromol ; 144: 698-704, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31857173

RESUMO

Polyhydroxyalkanoates are microbial polyesters which are considered being biological alternatives to petrochemical polymers. Extremophiles, such as thermophilic PHA producers, hold promise to improve competitiveness of PHA production process. Therefore, this work aimed at isolation of new strains, which could produce PHA under elevated temperature. Since traditional Nile red staining of colonies provided false positive results in thermophiles, we developed a novel strategy of enriching microbial consortia by PHA producers. This so called "osmoselective strategy" is based on application of osmotic challenge by sudden exposition of the mixed microbial culture to hypertonic and subsequently to hypotonic conditions; moreover, this strategy relies on the fact that PHA protect bacteria from negative effects of rapid fluctuations in osmotic pressure. In combination with fast and reliable ATR-FTIR inspection of selected colonies for presence of PHA, we were able to isolate several promising thermophilic or thermotolerant PHA producing strains belonging to the genera Bacillus, Aneurinibacillus and Chelatococcus, which indeed deserves further investigation to evaluate their potential for industrial production of PHA.


Assuntos
Bactérias/isolamento & purificação , Consórcios Microbianos , Poli-Hidroxialcanoatos/química , Alphaproteobacteria/isolamento & purificação , Bacillales/isolamento & purificação , Bacillus/isolamento & purificação , Sequência de Bases , Reatores Biológicos , DNA Bacteriano , Fermentação , Temperatura Alta , Osmose , Termotolerância
11.
Bioresour Technol ; 292: 122028, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31466820

RESUMO

The aim of this work was to study the potential of selected Halomonas species for conversion of waste frying oil into polyhydroxyalkanoates (PHA). In total nine Halomonas strains were experimentally screened for their capability of PHA production. Among them, Halomonas neptunia and Halomonas hydrothermalis were identified as potent PHA producers. Initial concentration of NaCl was identified as parameter influencing PHA yields as well as molecular weight of the polymer. In addition, H. hydrothermalis was capable of biosynthesis of a copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate P(3HB-co-3HV). When valerate was utilized as a precursor, the 3HV fraction in the copolymer reached high values of 50.15 mol.%. PHA production on lipid substrates by Halomonas has not been reported so far. Bearing in mind all the positive aspects of employing extremophiles in industrial biotechnology, H. hydrothermalis seems to be a very interesting halophilic strain for production of PHA using lipid substrates.


Assuntos
Halomonas , Poli-Hidroxialcanoatos , Ácido 3-Hidroxibutírico , Biotecnologia , Poliésteres
12.
Bioengineering (Basel) ; 6(3)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31455023

RESUMO

The terpolymer of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), and 4-hydroxybutyrate (4HB) was produced employing Cupriavidus sp. DSM 19379. Growth in the presence of γ-butyrolactone, ε-caprolactone, 1,4-butanediol, and 1,6-hexanediol resulted in the synthesis of a polymer consisting of 3HB and 4HB monomers. Single and two-stage terpolymer production strategies were utilized to incorporate the 3HV subunit into the polymer structure. At the single-stage cultivation mode, γ-butyrolactone or 1,4-butanediol served as the primary substrate and propionic and valeric acid as the precursor of 3HV. In the two-stage production, glycerol was used in the growth phase, and precursors for the formation of the terpolymer in combination with the nitrogen limitation in the medium were used in the second phase. The aim of this work was to maximize the Polyhydroxyalkanoates (PHA) yields with a high proportion of 3HV and 4HB using different culture strategies. The obtained polymers contained 0-29 mol% of 3HV and 16-32 mol% of 4HB. Selected polymers were subjected to a material properties analysis such as differential scanning calorimetry (DSC), thermogravimetry, and size exclusion chromatography coupled with multi angle light scattering (SEC-MALS) for determination of the molecular weight. The number of polymers in the biomass, as well as the monomer composition of the polymer were determined by gas chromatography.

13.
Bioresour Technol ; 256: 552-556, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29478784

RESUMO

This work explores molecular, morphological as well as biotechnological features of the highly promising polyhydroxyalkanoates (PHA) producer Halomonas halophila. Unlike many other halophiles, this bacterium does not require expensive complex media components and it is capable to accumulate high intracellular poly(3-hydroxybutyrate) (PHB) fractions up to 82% of cell dry mass. Most remarkably, regulating the concentration of NaCl apart from PHB yields influences also the polymer's molecular mass and polydispersity. The bacterium metabolizes various carbohydrates including sugars predominant in lignocelluloses and other inexpensive substrates. Therefore, the bacterium was employed for PHB production on hydrolysates of cheese whey, spent coffee grounds, sawdust and corn stover, which were hydrolyzed by HCl; required salinity of cultivation media was set up during neutralization by NaOH. The bacterium was capable to use all the tested hydrolysates as well as sugar beet molasses for PHB biosynthesis, indicating its potential for industrial PHB production.


Assuntos
Halomonas , Hidroxibutiratos , Poliésteres , Ácido 3-Hidroxibutírico
14.
Biotechnol Adv ; 36(3): 856-870, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29248684

RESUMO

Polyhydroxyalkanoates (PHA) are polyesters accumulated by numerous prokaryotes as storage materials; they attract attention as "green" alternatives to petrochemical plastics. Recent research has demonstrated that their biological role goes beyong their storage function, since they presence in cytoplasm enhances stress resistance of microorganisms. To address these complex functions, this review summarizes the protective effects of PHA for microrganisms; the involvement of PHA in stress resistance is discussed also from a praxis-oriented perspective. The review discourses the controlled application of stress to improve PHA productivity. Also the manifold advantages of using stress adapted microbes - extremophiles as PHA producers are discussed.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biodegradação Ambiental , Biotecnologia/métodos , Poli-Hidroxialcanoatos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Agricultura/métodos , Consórcios Microbianos , Pressão Osmótica , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...