Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 6542, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695813

RESUMO

The use of long-lived positron emitters 64Cu or 61Cu for labelling of Affibody molecules may improve breast cancer patients' stratification for HER-targeted therapy. Previous animal studies have shown that the use of triaza chelators for 64Cu labelling of synthetic Affibody molecules is suboptimal. In this study, we tested a hypothesis that the use of cross-bridged chelator, CB-TE2A, in combination with Gly-Glu-Glu-Glu spacer for labelling of Affibody molecules with radiocopper would improve imaging contrast. CB-TE2A was coupled to the N-terminus of synthetic Affibody molecules extended either with a glycine (designation CB-TE2A-G-ZHER2:342) or Gly-Glu-Glu-Glu spacer (CB-TE2A-GEEE-ZHER2:342). Biodistribution and targeting properties of 64Cu-CB-TE2A-G-ZHER2:342 and 64Cu-CB-TE2A-GEEE-ZHER2:342 were compared in tumor-bearing mice with the properties of 64Cu-NODAGA-ZHER2:S1, which had the best targeting properties in the previous study. 64Cu-CB-TE2A-GEEE-ZHER2:342 provided appreciably lower uptake in normal tissues and higher tumor-to-organ ratios than 64Cu-CB-TE2A-G-ZHER2:342 and 64Cu-NODAGA-ZHER2:S1. The most pronounced was a several-fold difference in the hepatic uptake. At the optimal time point, 6 h after injection, the tumor uptake of 64Cu-CB-TE2A-GEEE-ZHER2:342 was 16 ± 6%ID/g and tumor-to-blood ratio was 181 ± 52. In conclusion, a combination of the cross-bridged CB-TE2A chelator and Gly-Glu-Glu-Glu spacer is preferable for radiocopper labelling of Affibody molecules and, possibly, other scaffold proteins having high renal re-absorption.

2.
Contrast Media Mol Imaging ; 2017: 8565802, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29097939

RESUMO

Imaging using affibody molecules enables discrimination between breast cancer metastases with high and low expression of HER2, making appropriate therapy selection possible. This study aimed to evaluate if the longer half-life of 64Cu (T1/2 = 12.7 h) would make 64Cu a superior nuclide compared to 68Ga for PET imaging of HER2 expression using affibody molecules. The synthetic ZHER2:S1 affibody molecule was conjugated with the chelators NOTA or NODAGA and labeled with 64Cu. The tumor-targeting properties of 64Cu-NOTA-ZHER2:S1 and 64Cu-NODAGA-ZHER2:S1 were evaluated and compared with the targeting properties of 68Ga-NODAGA-ZHER2:S1 in mice. Both 64Cu-NOTA-ZHER2:S1 and 64Cu-NODAGA-ZHER2:S1 demonstrated specific targeting of HER2-expressing xenografts. At 2 h after injection of 64Cu-NOTA-ZHER2:S1, 64Cu-NODAGA-ZHER2:S1, and 68Ga-NODAGA-ZHER2:S1, tumor uptakes did not differ significantly. Renal uptake of 64Cu-labeled conjugates was dramatically reduced at 6 and 24 h after injection. Notably, radioactivity uptake concomitantly increased in blood, lung, liver, spleen, and intestines, which resulted in decreased tumor-to-organ ratios compared to 2 h postinjection. Organ uptake was lower for 64Cu-NODAGA-ZHER2:S1. The most probable explanation for this biodistribution pattern was the release and redistribution of renal radiometabolites. In conclusion, monoamide derivatives of NOTA and NODAGA may be suboptimal chelators for radiocopper labeling of anti-HER2 affibody molecules and, possibly, other scaffold proteins with high renal uptake.


Assuntos
Acetatos/química , Radioisótopos de Cobre/normas , Compostos Heterocíclicos com 1 Anel/química , Compostos Heterocíclicos/química , Receptor ErbB-2/imunologia , Animais , Quelantes , Feminino , Radioisótopos de Gálio , Meia-Vida , Xenoenxertos , Humanos , Camundongos , Proteínas Recombinantes de Fusão , Distribuição Tecidual
3.
Biosens Bioelectron ; 82: 55-63, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27040942

RESUMO

We present a simple and inexpensive method for label-free detection of biomolecules. The method monitors the changes in streaming current in a fused silica capillary as target biomolecules bind to immobilized receptors on the inner surface of the capillary. To validate the concept, we show detection and time response of different protein-ligand and protein-protein systems: biotin-avidin and biotin-streptavidin, barstar-dibarnase and Z domain-immunoglobulin G (IgG). We show that specific binding of these biomolecules can be reliably monitored using a very simple setup. Using sequential injections of various proteins at a diverse concentration range and as well as diluted human serum we further investigate the capacity of the proposed technique to perform specific target detection from a complex sample. We also investigate the time for the signal to reach equilibrium and its dependence on analyte concentration and demonstrate that the current setup can be used to detect biomolecules at a concentration as low as 100pM without requiring any advanced device fabrication procedures. Finally, an analytical model based on diffusion theory has been presented to explain the dependence of the saturation time on the analyte concentration and capillary dimensions and how reducing length and inner diameter of the capillary is predicted to give faster detection and in practice also lower limit of detection.


Assuntos
Técnicas Biossensoriais/instrumentação , Proteínas/análise , Avidina/análise , Bacillus amyloliquefaciens/enzimologia , Proteínas de Bactérias/análise , Biotina/análise , Desenho de Equipamento , Humanos , Imunoglobulina G/análise , Ligantes , Ribonucleases/análise , Proteína Estafilocócica A/análise , Staphylococcus aureus/química , Estreptavidina/análise , Streptomyces/química
4.
J Nucl Med ; 57(3): 431-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26659353

RESUMO

UNLABELLED: Affibody molecules constitute a new class of probes for radionuclide tumor targeting. The small size of Affibody molecules is favorable for rapid localization in tumors and clearance from circulation. However, high renal reabsorption of Affibody molecules prevents the use of residualizing radiometals, including several promising low-energy ß- and α-emitters, for radionuclide therapy. We tested a hypothesis that Affibody-based pretargeting mediated by a bioorthogonal interaction between trans-cyclooctene (TCO) and tetrazine would provide higher accumulation of radiometals in tumor xenografts than in the kidneys. METHODS: TCO was conjugated to the anti-human epidermal growth factor receptor 2 (HER2) Affibody molecule Z2395. DOTA-tetrazine was labeled with (111)In and (177)Lu. In vitro pretargeting was studied in HER2-expressing SKOV-3 and BT474 cell lines. In vivo studies were performed on BALB/C nu/nu mice bearing SKOV-3 xenografts. RESULTS: (125)I-Z2395-TCO bound specifically to HER2-expressing cells in vitro with an affinity of 45 ± 16 pM. (111)In-tetrazine bound specifically and selectively to Z2395-TCO pretreated cells. In vivo studies demonstrated HER2-specific (125)I-Z2395-TCO accumulation in xenografts. TCO-mediated (111)In-tetrazine localization was shown in tumors, when the radiolabeled tracer was injected 4 h after an injection of Z2395-TCO. At 1 h after injection, the tumor uptake of (111)In-tetrazine and (177)Lu-tetrazine was approximately 2-fold higher than the renal uptake. Pretargeting provided more than a 56-fold reduction of renal uptake of (111)In in comparison with direct targeting. CONCLUSION: The feasibility of Affibody-based bioorthogonal chemistry-mediated pretargeting was demonstrated. The use of pretargeting provides a substantial reduction of radiometal accumulation in kidneys, creating preconditions for palliative radionuclide therapy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Neoplasias/radioterapia , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/uso terapêutico , Animais , Linhagem Celular Tumoral , Estudos de Viabilidade , Feminino , Humanos , Neoplasias Renais/radioterapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Radioisótopos/uso terapêutico , Receptor ErbB-2/química , Tomografia Computadorizada de Emissão de Fóton Único , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Chembiochem ; 16(17): 2522-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26417902

RESUMO

Antibodies are extensively used in research, diagnostics, and therapy, and for many applications the antibodies need to be labeled. Labeling is typically performed by using amine-reactive probes that target surface-exposed lysine residues, resulting in heterogeneously labeled antibodies. An alternative labeling strategy is based on the immunoglobulin G (IgG)-binding protein domain Z, which binds to the Fc region of IgG. Introducing the photoactivable amino acid benzoylphenylalanine (BPA) into the Z domain makes it possible for a covalent bond to be be formed between the Z domain and the antibody on UV irradiation, to produce a site-specifically labeled product. Z32 BPA was synthesized by solid-phase peptide synthesis and further functionalized to give alkyne-Z32 BPA and azide-Z32 BPA for Cu(I) -catalyzed cycloaddition, as well as DBCO-Z32 BPA for Cu-free strain-promoted cycloaddition. The Z32 BPA variants were conjugated to the human IgG1 antibody trastuzumab and site-specifically labeled with biotin or fluorescein. The fluorescently labeled trastuzumab showed specific staining of the membranes of HER2-expressing cells in immunofluorescence microscopy.


Assuntos
Alcinos/química , Azidas/química , Imunoglobulina G/química , Biotina/química , Catálise , Linhagem Celular Tumoral , Cobre , Reação de Cicloadição , Fluoresceína/química , Humanos , Microscopia de Fluorescência , Peptídeos/síntese química , Peptídeos/química , Fenilalanina/análogos & derivados , Fenilalanina/química , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Trastuzumab/química
6.
Mol Imaging ; 132014.
Artigo em Inglês | MEDLINE | ID: mdl-25249017

RESUMO

Affibody molecules, small (7 kDa) scaffold proteins, are a promising class of probes for radionuclide molecular imaging. Radiolabeling of Affibody molecules with the positron-emitting nuclide 68Ga would permit the use of positron emission tomography (PET), providing better resolution, sensitivity, and quantification accuracy than single-photon emission computed tomography (SPECT). The synthetic anti-HER2 ZHER2:S1 Affibody molecule was conjugated with DOTA at the N-terminus, in the middle of helix 3, or at the C-terminus. The biodistribution of 68Ga- and 111In-labeled Affibody molecules was directly compared in NMRI nu/nu mice bearing SKOV3 xenografts. The position of the chelator strongly influenced the biodistribution of the tracers, and the influence was more pronounced for 68Ga-labeled Affibody molecules than for the 111In-labeled counterparts. The best 68Ga-labeled variant was 68Ga-[DOTA-A1]-ZHER2:S1, which provided a tumor uptake of 13 ± 1 %ID/g and a tumor to blood ratio of 39 ± 12 at 2 hours after injection. 111In-[DOTA-A1]-ZHER2:S1 and 111In-[DOTA-K58]-ZHER2:S1 were equally good at this time point, providing a tumor uptake of 15 to 16 %ID/g and a tumor to blood ratio in the range of 60 to 80. In conclusion, the selection of the best position for a chelator in Affibody molecules can be used for optimization of their imaging properties. This may be important for the development of Affibody-based and other protein-based imaging probes.


Assuntos
Quelantes/química , Radioisótopos de Gálio/farmacocinética , Compostos Heterocíclicos com 1 Anel/química , Radioisótopos de Índio/farmacocinética , Neoplasias Ovarianas/diagnóstico por imagem , Proteínas Recombinantes de Fusão/síntese química , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Marcação por Isótopo , Camundongos , Transplante de Neoplasias , Tomografia por Emissão de Pósitrons
7.
ACS Nano ; 8(5): 4358-65, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24730587

RESUMO

Fluorescence nanoscopy provides means to discern the finer details of protein localization and interaction in cells by offering an order of magnitude higher resolution than conventional optical imaging techniques. However, these super resolution techniques put higher demands on the optical system and the fluorescent probes, making multicolor fluorescence nanoscopy a challenging task. Here we present a new and simple procedure, which exploits the photostability and excitation spectra of dyes to increase the number of simultaneous recordable targets in STED nanoscopy. We use this procedure to demonstrate four-color STED imaging of platelets with ≤40 nm resolution and low crosstalk. Platelets can selectively store, sequester, and release a multitude of different proteins, in a manner specific for different physiological and disease states. By applying multicolor nanoscopy to study platelets, we can achieve spatial mapping of the protein organization with a high resolution for multiple proteins at the same time and in the same cell. This provides a means to identify specific platelet activation states for diagnostic purposes and to understand the underlying protein storage and release mechanisms. We studied the organization of the pro- and antiangiogenic proteins VEGF and PF-4, together with fibrinogen and filamentous actin, and found distinct features in their respective protein localization. Further, colocalization analysis revealed only minor overlap between the proteins VEGF and PF-4 indicating that they have separate storage and release mechanisms, corresponding well with their opposite roles as pro- and antiangiogenic proteins, respectively.


Assuntos
Plaquetas/patologia , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Proteínas/química , Actinas/química , Algoritmos , Anticorpos/química , Cor , Corantes/química , Fibrinogênio/química , Fluorescência , Corantes Fluorescentes/química , Humanos , Processamento de Imagem Assistida por Computador , Lasers , Neovascularização Patológica , Óptica e Fotônica , Fotodegradação
8.
Bioconjug Chem ; 25(3): 481-8, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24520805

RESUMO

Site-specific labeling of antibodies can be performed using the immunoglobulin-binding Z domain, derived from staphylococcal protein A (SpA), which has a well-characterized binding site in the Fc region of antibodies. By introducing a photoactivable probe in the Z domain, a covalent bond can be formed between the Z domain and the antibody by irradiation with UV light. The aim of this study was to improve the conjugation yield for labeling of different subclasses of IgG having different sequence composition, using a photoactivated Z domain variant. Four different variants of the Z domain (Z5BPA, Z5BBA, Z32BPA, and Z32BBA) were synthesized to investigate the influence of the position of the photoactivable probe and the presence of a flexible linker between the probe and the protein. For two of the variants, the photoreactive benzophenone group was introduced as part of an amino acid side chain by incorporation of the unnatural amino acid benzoylphenylalanine (BPA) during peptide synthesis. For the other two variants, the photoreactive benzophenone group was attached via a flexible linker by coupling of benzoylbenzoic acid (BBA) to the ε-amino group of a selectively deprotected lysine residue. Photoconjugation experiments using human IgG1, mouse IgG1, and mouse IgG2A demonstrated efficient conjugation for all antibodies. It was shown that differences in linker length had a large impact on the conjugation efficiency for labeling of mouse IgG1, whereas the positioning of the photoactivable probe in the sequence of the protein had a larger effect for mouse IgG2A. Conjugation to human IgG1 was only to a minor extent affected by position or linker length. For each subclass of antibody, the best variant tested using a standard conjugation protocol resulted in conjugation efficiencies of 41-66%, which corresponds to on average approximately one Z domain attached to each antibody. As a combination of the two best performing variants, Z5BBA and Z32BPA, a Z domain variant with two photoactivable probes (Z5BBA32BPA) was also synthesized with the aim of targeting a wider panel of antibody subclasses and species. This new reagent could efficiently couple to all antibody subclasses that were targeted by the single benzophenone-labeled Z domain variants, with conjugation efficiencies of 26-41%.


Assuntos
Anticorpos Monoclonais/química , Imunoglobulina G/química , Animais , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Peptídeos/isolamento & purificação , Fenilalanina/análogos & derivados , Fenilalanina/química , Raios Ultravioleta
9.
PLoS One ; 8(8): e70028, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936372

RESUMO

Affibody molecules are a class of small (7 kDa) non-immunoglobulin scaffold-based affinity proteins, which have demonstrated substantial potential as probes for radionuclide molecular imaging. The use of positron emission tomography (PET) would further increase the resolution and quantification accuracy of Affibody-based imaging. The rapid in vivo kinetics of Affibody molecules permit the use of the generator-produced radionuclide (68)Ga (T1/2=67.6 min). Earlier studies have demonstrated that the chemical nature of chelators has a substantial influence on the biodistribution properties of Affibody molecules. To determine an optimal labeling approach, the macrocyclic chelators 1,4,7,10-tetraazacylododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-N,N,N-triacetic acid (NOTA) and 1-(1,3-carboxypropyl)-1,4,7- triazacyclononane-4,7-diacetic acid (NODAGA) were conjugated to the N-terminus of the synthetic Affibody molecule ZHER2:S1 targeting HER2. Affibody molecules were labeled with (68)Ga, and their binding specificity and cellular processing were evaluated. The biodistribution of (68)Ga-DOTA-ZHER2:S1, (68)Ga-NOTA-ZHER2:S1 and (68)Ga-NODAGA-ZHER2:S1, as well as that of their (111)In-labeled counterparts, was evaluated in BALB/C nu/nu mice bearing HER2-expressing SKOV3 xenografts. The tumor uptake for (68)Ga-DOTA-ZHER2:S1 (17.9 ± 0.7%IA/g) was significantly higher than for both (68)Ga-NODAGA-ZHER2:S1 (16.13 ± 0.67%IA/g) and (68)Ga-NOTA-ZHER2:S1 (13 ± 3%IA/g) at 2 h after injection. (68)Ga-NODAGA-ZHER2:S1 had the highest tumor-to-blood ratio (60 ± 10) in comparison with both (68)Ga-DOTA-ZHER2:S1 (28 ± 4) and (68)Ga-NOTA-ZHER2:S1 (42 ± 11). The tumor-to-liver ratio was also higher for (68)Ga-NODAGA-ZHER2:S1 (7 ± 2) than the DOTA and NOTA conjugates (5.5 ± 0.6 vs.3.3 ± 0.6). The influence of chelator on the biodistribution and targeting properties was less pronounced for (68)Ga than for (111)In. The results of this study demonstrate that macrocyclic chelators conjugated to the N-terminus have a substantial influence on the biodistribution of HER2-targeting Affibody molecules labeled with (68)Ga.This can be utilized to enhance the imaging contrast of PET imaging using Affibody molecules and improve the sensitivity of molecular imaging. The study demonstrated an appreciable difference of chelator influence for (68)Ga and (111)In.


Assuntos
Quelantes/química , Radioisótopos de Índio , Compostos Macrocíclicos/química , Proteínas Recombinantes de Fusão/química , Amidas/química , Sequência de Aminoácidos , Animais , Desenho de Fármacos , Feminino , Radioisótopos de Gálio , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular
10.
Bioconjug Chem ; 23(8): 1661-70, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22768790

RESUMO

Affibody molecules are a class of affinity proteins. Their small size (7 kDa) in combination with the high (subnanomolar) affinity for a number of cancer-associated molecular targets makes them suitable for molecular imaging. Earlier studies demonstrated that the selection of radionuclide and chelator may substantially influence the tumor-targeting properties of affibody molecules. Moreover, the placement of chelators for labeling of affibody molecules with (99m)Tc at different positions in affibody molecules influenced both blood clearance rate and uptake in healthy tissues. This introduces an opportunity to improve the contrast of affibody-mediated imaging. In this comparative study, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to the synthetic affibody molecule Z(HER2:S1) at three different positions: DOTA-A1-Z(HER2:S1) (N-terminus), DOTA-K58-Z(HER2:S1) (C-terminus), and DOTA-K50-Z(HER2:S1) (middle of helix 3). The affinity for HER2 differed slightly among the variants and the K(D) values were determined to be 133 pM, 107 pM and 94 pM for DOTA-A1-Z(HER2:S1), DOTA-K50-Z(HER2:S1), and DOTA-K58-Z(HER2:S1), respectively. Z(HER2:S1)-K50-DOTA showed a slightly lower melting point (57 °C) compared to DOTA-A1-Z(HER2:S1) (64 °C) and DOTA-K58-Z(HER2:S1) (62 °C), but all variants showed good refolding properties after heat treatment. All conjugates were successfully labeled with (111)In resulting in a radiochemical yield of 99% with preserved binding capacity. In vitro specificity studies using SKOV-3 and LS174T cell lines showed that the binding of the radiolabeled compounds was HER2 receptor-mediated, which also was verified in vivo using BALB/C nu/nu mice with LS174T and Ramos lymphoma xenografts. The three conjugates all showed specific uptake in LS174T xenografts in nude mice, where DOTA-A1-Z(HER2:S1)and DOTA-K58-Z(HER2:S1) showed the highest uptake. Overall, DOTA-K58-Z(HER2:S1) provided the highest tumor-to-blood ratio, which is important for a high-contrast imaging. In conclusion, the positioning of the DOTA chelator influences the cellular processing and the biodistribution pattern of radiolabeled affibody molecules, creating preconditions for imaging optimization.


Assuntos
Quelantes/química , Compostos Heterocíclicos com 1 Anel/química , Radioisótopos de Índio , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacocinética , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Desenho de Fármacos , Estabilidade de Medicamentos , Feminino , Humanos , Marcação por Isótopo , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Receptor ErbB-2/imunologia , Proteínas Recombinantes de Fusão/química , Relação Estrutura-Atividade , Distribuição Tecidual
11.
Eur J Nucl Med Mol Imaging ; 39(3): 481-92, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22322933

RESUMO

PURPOSE: In disseminated prostate cancer, expression of human epidermal growth factor receptor type 2 (HER2) is one of the pathways to androgen independence. Radionuclide molecular imaging of HER2 expression in disseminated prostate cancer might identify patients for HER2-targeted therapy. Affibody molecules are small (7 kDa) targeting proteins with high potential as tracers for radionuclide imaging. The goal of this study was to develop an optimal Affibody-based tracer for visualization of HER2 expression in prostate cancer. METHODS: A synthetic variant of the anti-HER2 Z(HER2:342) Affibody molecule, Z(HER2:S1), was N-terminally conjugated with the chelators DOTA, NOTA and NODAGA. The conjugated proteins were biophysically characterized by electrospray ionization mass spectroscopy (ESI-MS), circular dichroism (CD) spectroscopy and surface plasmon resonance (SPR)-based biosensor analysis. After labelling with (111)In, the biodistribution was assessed in normal mice and the two most promising conjugates were further evaluated for tumour targeting in mice bearing DU-145 prostate cancer xenografts. RESULTS: The HER2-binding equilibrium dissociation constants were 130, 140 and 90 pM for DOTA-Z(HER2:S1), NOTA-Z(HER2:S1) and NODAGA-Z(HER2:S1), respectively. A comparative study of (111)In-labelled DOTA-Z(HER2:S1), NOTA-Z(HER2:S1) and NODAGA-Z(HER2:S1) in normal mice demonstrated a substantial influence of the chelators on the biodistribution properties of the conjugates. (111)In-NODAGA-Z(HER2:S1) had the most rapid clearance from blood and healthy tissues. (111)In-NOTA-Z(HER2:S1) showed high hepatic uptake and was excluded from further evaluation. (111)In-DOTA-Z(HER2:S1) and (111)In-NODAGA-Z(HER2:S1) demonstrated specific uptake in DU-145 prostate cancer xenografts in nude mice. The tumour uptake of (111)In-NODAGA-Z(HER2:S1), 5.6 ± 0.4%ID/g, was significantly lower than the uptake of (111)In-DOTA-Z(HER2:S1), 7.4 ± 0.5%ID/g, presumably because of lower bioavailability due to more rapid clearance. (111)In-NODAGA-Z(HER2:S1) provided higher tumour-to-blood ratio, but somewhat lower tumour-to-liver, tumour-to-spleen and tumour-to-bone ratios. CONCLUSION: Since distant prostate cancer metastases are situated in bone or bone marrow, the higher tumour-to-bone ratio is the most important. This renders (111)In-DOTA-Z(HER2:S1) a preferable agent for imaging of HER2 expression in disseminated prostate cancer.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Transformação Celular Neoplásica , Quelantes/química , Radioisótopos de Índio/química , Neoplasias da Próstata/patologia , Receptor ErbB-2/imunologia , Acetatos/química , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/farmacocinética , Sítios de Ligação , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Compostos Heterocíclicos/química , Compostos Heterocíclicos com 1 Anel/química , Humanos , Marcação por Isótopo , Masculino , Camundongos , Imagem Molecular , Dados de Sequência Molecular , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Especificidade por Substrato
12.
Nucl Med Biol ; 39(4): 518-29, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22172396

RESUMO

INTRODUCTION: Affibody molecules have demonstrated potential for radionuclide molecular imaging. The aim of this study was to synthesize and evaluate a maleimido derivative of the 1,4,7-triazacyclononane-1-glutaric acid-4,7-diacetic acid (NODAGA) for site-specific labeling of anti-HER2 Affibody molecule. METHODS: The maleimidoethylmonoamide NODAGA (MMA-NODAGA) was synthesized and conjugated to Z(HER2:2395) Affibody molecule having a C-terminal cysteine. Labeling efficiency, binding specificity to and cell internalization by HER2-expressing cells of [(111)In-MMA-NODAGA-Cys(61)]-Z(HER2:2395) were studied. Biodistribution of [(111)In-MMA-NODAGA-Cys(61)]-Z(HER2:2395) and [(111)In-MMA-DOTA-Cys(61)]-Z(HER2:2395) was compared in mice. RESULTS: The affinity of [MMA-NODAGA-Cys(61)]-Z(HER2:2395) binding to HER2 was 67 pM. The (111)In-labeling yield was 99.6%±0.5% after 30 min at 60°C. [(111)In-MMA-NODAGA-Cys(61)]-Z(HER2:2395) bound specifically to HER2-expressing cells in vitro and in vivo. Tumor uptake of [(111)In-MMA-NODAGA-Cys(61)]-Z(HER2:2395) in mice bearing DU-145 xenografts (4.7%±0.8% ID/g) was lower than uptake of [(111)In-MMA-DOTA-Cys(61)]-Z(HER2:2395) (7.5%±1.6% ID/g). However, tumor-to-organ ratios were higher for [(111)In-MMA-NODAGA-Cys(61)]-Z(HER2:2395) due to higher clearance rate from normal tissues. CONCLUSIONS: MMA-NODAGA is a promising chelator for site-specific labeling of targeting proteins containing unpaired cysteine. Appreciable influence of chelators on targeting properties of Affibody molecules was demonstrated.


Assuntos
Acetatos/química , Anticorpos Monoclonais/química , Compostos Heterocíclicos com 1 Anel/química , Radioisótopos de Índio/química , Marcação por Isótopo/métodos , Maleimidas/química , Receptor ErbB-2/imunologia , Proteínas Recombinantes de Fusão/química , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Sítios de Ligação , Linhagem Celular Tumoral , Quelantes/química , Humanos , Masculino , Camundongos , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacocinética , Especificidade por Substrato , Compostos de Sulfidrila/química
13.
Bioconjug Chem ; 22(5): 894-902, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21443270

RESUMO

Radionuclide molecular imaging has the potential to improve cancer treatment by selection of patients for targeted therapy. Affibody molecules are a class of small (7 kDa) high-affinity targeting proteins with appreciable potential as molecular imaging probes. The NOTA chelator forms stable complexes with a number of radionuclides suitable for SPECT or PET imaging. A maleimidoethylmonoamide NOTA (MMA-NOTA) has been prepared for site-specific labeling of Affibody molecules having a unique C-terminal cysteine. Coupling of the MMA-NOTA to the anti-HER2 Affibody molecule Z(HER2:2395) resulted in a conjugate with an affinity (dissociation constant) to HER2 of 72 pM. Labeling of [MMA-NOTA-Cys(61)]-Z(HER2:2395) with (111)In gave a yield of >95% after 20 min at 60 °C. In vitro cell tests demonstrated specific binding of [(111)In-MMA-NOTA-Cys(61)]-Z(HER2:2395) to HER2-expressing cell lines. In mice bearing prostate cancer DU-145 xenografts, the tumor uptake of [(111)In-MMA-NOTA-Cys(61)]-Z(HER2:2395) was 8.2 ± 0.9% IA/g and the tumor-to-blood ratio was 31 ± 1 (4 h postinjection). DU-145 xenografts were clearly visualized by a gamma camera. Direct in vivo comparison of [(111)In-MMA-NOTA-Cys(61)]-Z(HER2:2395) and [(111)In-MMA-DOTA-Cys(61)]-Z(HER2:2395) demonstrated that both conjugates provided equal radioactivity uptake in tumors, but the tumor-to-organ ratios were better for [(111)In-MMA-NOTA-Cys(61)]-Z(HER2:2395) due to more efficient clearance from normal tissues. In conclusion, coupling of MMA-NOTA to a cysteine-containing Affibody molecule resulted in a site-specifically labeled conjugate, which retains high affinity, can be efficiently labeled, and allows for high-contrast imaging.


Assuntos
Compostos Heterocíclicos , Maleimidas , Imagem Molecular , Compostos Radiofarmacêuticos , Proteínas Recombinantes de Fusão , Coloração e Rotulagem , Animais , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacocinética , Compostos Heterocíclicos com 1 Anel , Masculino , Maleimidas/química , Maleimidas/farmacocinética , Camundongos , Camundongos Nus , Estrutura Molecular , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...