Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Syst Neurosci ; 17: 1217170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719024

RESUMO

Cognitive and behavioral processes are often accompanied by changes within well-defined frequency bands of the local field potential (LFP i.e., the voltage induced by neuronal activity). These changes are detectable in the frequency domain using the Fourier transform and are often interpreted as neuronal oscillations. However, aside some well-known exceptions, the processes underlying such changes are difficult to track in time, making their oscillatory nature hard to verify. In addition, many non-periodic neural processes can also have spectra that emphasize specific frequencies. Thus, the notion that spectral changes reflect oscillations is likely too restrictive. In this study, we use a simple yet versatile framework to understand the frequency spectra of neural recordings. Using simulations, we derive the Fourier spectra of periodic, quasi-periodic and non-periodic neural processes having diverse waveforms, illustrating how these attributes shape their spectral signatures. We then show how neural processes sum their energy in the local field potential in simulated and real-world recording scenarios. We find that the spectral power of neural processes is essentially determined by two aspects: (1) the distribution of neural events in time and (2) the waveform of the voltage induced by single neural events. Taken together, this work guides the interpretation of the Fourier spectrum of neural recordings and indicates that power increases in specific frequency bands do not necessarily reflect periodic neural activity.

2.
bioRxiv ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37215044

RESUMO

Cognitive and behavioral processes are often accompanied by changes within well-defined frequency bands of the local field potential (LFP i.e., the voltage induced by neuronal activity). These changes are detectable in the frequency domain using the Fourier transform and are often interpreted as neuronal oscillations. However, aside some well-known exceptions, the processes underlying such changes are difficult to track in time, making their oscillatory nature hard to verify. In addition, many non-periodic neural processes can also have spectra that emphasize specific frequencies. Thus, the notion that spectral changes reflect oscillations is likely too restrictive. In this study, we propose a simple yet versatile framework to understand the frequency spectra of neural recordings. Using simulations, we derive the Fourier spectra of periodic, quasi-periodic and non-periodic neural processes having diverse waveforms, illustrating how these attributes shape their spectral signatures. We then show how neural processes sum their energy in the local field potential in simulated and real-world recording scenarios. We find that the spectral power of neural processes is essentially determined by two aspects: 1) the distribution of neural events in time and 2) the waveform of the voltage induced by single neural events. Taken together, this work guides the interpretation of the Fourier spectrum of neural recordings and indicates that power increases in specific frequency bands do not necessarily reflect periodic neural activity.

3.
Neuron ; 111(3): 297-299, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731427

RESUMO

Visually evoked synchrony in the primary visual cortex has proven to be a robust model for examining circuit interactions. In this issue of Neuron, Veit et al.1 highlight a previously unappreciated role for VIP interneurons in regulating local and long-range patterns of coordinated neural activity.


Assuntos
Córtex Visual , Córtex Visual/fisiologia , Interneurônios/fisiologia , Neurônios/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
4.
PLoS One ; 17(7): e0270981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802727

RESUMO

GABAergic interneurons tend to diversify into similar classes across telencephalic regions. However, it remains unclear whether the electrophysiological and molecular properties commonly used to define these classes are discriminant in the hilus of the dentate gyrus. Here, using patch-clamp combined with single cell RT-PCR, we compare the relevance of commonly used electrophysiological and molecular features for the clustering of GABAergic interneurons sampled from the mouse hilus and primary sensory cortex. While unsupervised clustering groups cortical interneurons into well-established classes, it fails to provide a convincing partition of hilar interneurons. Statistical analysis based on resampling indicates that hilar and cortical GABAergic interneurons share limited homology. While our results do not invalidate the use of classical molecular marker in the hilus, they indicate that classes of hilar interneurons defined by the expression of molecular markers do not exhibit strongly discriminating electrophysiological properties.


Assuntos
Giro Denteado , Neurônios GABAérgicos , Animais , Interneurônios/metabolismo , Camundongos
5.
Cereb Cortex ; 30(5): 3074-3086, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31800015

RESUMO

Recent work suggests an important role for cortical-subcortical networks in seizure-related loss of consciousness. Temporal lobe seizures disrupt subcortical arousal systems, which may lead to depressed cortical function and loss of consciousness. Extracellular recordings show ictal neocortical slow waves at about 1 Hz, but it is not known whether these simply represent seizure propagation or alternatively deep sleep-like activity, which should include cortical neuronal Up and Down states. In this study, using in vivo whole-cell recordings in a rat model of focal limbic seizures, we directly examine the electrophysiological properties of cortical neurons during seizures and deep anesthesia. We found that during seizures, the membrane potential of frontal cortical secondary motor cortex layer 5 neurons fluctuates between Up and Down states, with decreased input resistance and increased firing rate in Up states when compared to Down states. Importantly, Up and Down states in seizures are not significantly different from those in deep anesthesia, in terms of membrane potential, oscillation frequency, firing rate, and input resistance. By demonstrating these fundamental similarities in cortical electrophysiology between deep anesthesia and seizures, our results support the idea that a state of decreased cortical arousal may contribute to mechanisms of loss of consciousness during seizures.


Assuntos
Potenciais de Ação/fisiologia , Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiopatologia , Neurônios/fisiologia , Convulsões/fisiopatologia , Animais , Eletrodos Implantados , Feminino , Ratos , Ratos Sprague-Dawley
6.
Neuron ; 101(3): 358-360, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30731056

RESUMO

The activity of the cerebral cortex patterns into recurring dynamic motifs. In the present issue of Neuron, Senzai et al. (2019) elucidate how these motifs recruit excitatory and inhibitory neurons across cortical layers and how brain state modulates laminar interactions.


Assuntos
Córtex Visual , Animais , Encéfalo , Córtex Cerebral , Camundongos , Neurônios
7.
PLoS Biol ; 14(2): e1002383, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26890123

RESUMO

Cortical gamma activity (30-80 Hz) is believed to play important functions in neural computation and arises from the interplay of parvalbumin-expressing interneurons (PV) and pyramidal cells (PYRs). However, the subthreshold dynamics underlying its emergence in the cortex of awake animals remain unclear. Here, we characterized the intracellular dynamics of PVs and PYRs during spontaneous and visually evoked gamma activity in layers 2/3 of V1 of awake mice using targeted patch-clamp recordings and synchronous local field potentials (LFPs). Strong gamma activity patterned in short bouts (one to three cycles), occurred when PVs and PYRs were depolarizing and entrained their membrane potential dynamics regardless of the presence of visual stimulation. PV firing phase locked unconditionally to gamma activity. However, PYRs only phase locked to visually evoked gamma bouts. Taken together, our results indicate that gamma activity corresponds to short pulses of correlated background synaptic activity synchronizing the output of cortical neurons depending on external sensory drive.


Assuntos
Ritmo Gama , Potenciais da Membrana , Células Piramidais/metabolismo , Córtex Visual/metabolismo , Animais , Interneurônios/metabolismo , Camundongos Transgênicos , Parvalbuminas/metabolismo
8.
Cereb Cortex ; 23(2): 423-41, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22357664

RESUMO

Neocortical layer VI modulates the thalamocortical transfer of information and has a significant impact on sensory processing. This function implicates local γ-aminobutyric acidergic (GABAergic) interneurons that have only been partly described at the present time. Here, we characterized 85 layer VI GABAergic interneurons in acute slices of mouse somatosensory barrel cortex, using whole-cell current-clamp recordings, single-cell reverse transcription-polymerase chain reaction, and biocytin labeling followed by Neurolucida reconstructions. Unsupervised clustering based on electrophysiological molecular and morphological properties disclosed 4 types of interneurons. The 2 major classes were fast-spiking cells transcribing parvalbumin (PV) (51%) and adapting interneurons transcribing somatostatin (SOM) (26%). The third population (18%) transcribed neuropeptide Y (NPY) and appeared very similar to neurogliaform cells. The last class (5%) was constituted by well-segregated GABAergic interneurons transcribing vasoactive intestinal peptide (VIP). Using transgenic mice expressing GFP under the control of the glutamic acid decarboxylase 67k (GAD67) promoter, we investigated the densities of GABAergic cells immunolabeled against PV, SOM, VIP, and NPY through the depth of layer VI. This analysis revealed that PV and NPY translating interneurons concentrate in the upper and lower parts of layer VI, respectively. This study provides an extensive characterization of the properties of layer VI interneurons.


Assuntos
Interneurônios/citologia , Interneurônios/metabolismo , Córtex Somatossensorial/citologia , Córtex Somatossensorial/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Imunofluorescência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Artigo em Inglês | MEDLINE | ID: mdl-22907992

RESUMO

GABAergic interneurons are local integrators of cortical activity that have been reported to be involved in the control of cerebral blood flow (CBF) through their ability to produce vasoactive molecules and their rich innervation of neighboring blood vessels. They form a highly diverse population among which the serotonin 5-hydroxytryptamine 3A receptor (5-HT(3A))-expressing interneurons share a common developmental origin, in addition to the responsiveness to serotonergic ascending pathway. We have recently shown that these neurons regroup two distinct subpopulations within the somatosensory cortex: Neuropeptide Y (NPY)-expressing interneurons, displaying morphological properties similar to those of neurogliaform cells and Vasoactive Intestinal Peptide (VIP)-expressing bipolar/bitufted interneurons. The aim of the present study was to determine the role of these neuronal populations in the control of vascular tone by monitoring blood vessels diameter changes, using infrared videomicroscopy in mouse neocortical slices. Bath applications of 1-(3-Chlorophenyl)biguanide hydrochloride (mCPBG), a 5-HT(3)R agonist, induced both constrictions (30%) and dilations (70%) of penetrating arterioles within supragranular layers. All vasoconstrictions were abolished in the presence of the NPY receptor antagonist (BIBP 3226), suggesting that they were elicited by NPY release. Vasodilations persisted in the presence of the VIP receptor antagonist VPAC1 (PG-97-269), whereas they were blocked in the presence of the neuronal Nitric Oxide (NO) Synthase (nNOS) inhibitor, L-NNA. Altogether, these results strongly suggest that activation of neocortical 5-HT(3A)-expressing interneurons by serotoninergic input could induces NO mediated vasodilatations and NPY mediated vasoconstrictions.

10.
Artigo em Inglês | MEDLINE | ID: mdl-22754499

RESUMO

IN THE NEOCORTEX, NEURONAL NITRIC OXIDE (NO) SYNTHASE (NNOS) IS ESSENTIALLY EXPRESSED IN TWO CLASSES OF GABAERGIC NEURONS: type I neurons displaying high levels of expression and type II neurons displaying weaker expression. Using immunocytochemistry in mice expressing GFP under the control of the glutamic acid decarboxylase 67k (GAD67) promoter, we studied the distribution of type I and type II neurons in the barrel cortex and their expression of parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptide (VIP). We found that type I neurons were predominantly located in deeper layers and expressed SOM (91.5%) while type II neurons were concentrated in layer II/III and VI and expressed PV (17.7%), SOM (18.7%), and VIP (10.2%). We then characterized neurons expressing nNOS mRNA (n = 42 cells) ex vivo, using whole-cell recordings coupled to single-cell reverse transcription-PCR and biocytin labeling. Unsupervised cluster analysis of this sample disclosed four classes. One cluster (n = 7) corresponded to large, deep layer neurons, displaying a high expression of SOM (85.7%) and was thus very likely to correspond to type I neurons. The three other clusters were identified as putative type II cells and corresponded to neurogliaform-like interneurons (n = 19), deep layer neurons expressing PV or SOM (n = 9), and neurons expressing VIP (n = 7). Finally, we performed nNOS immunohistochemistry on mouse lines in which GFP labeling revealed the expression of two specific developmental genes (Lhx6 and 5-HT(3A)). We found that type I neurons expressed Lhx6 but never 5-HT(3A), indicating that they originate in the medial ganglionic eminence (MGE). Type II neurons expressed Lhx6 (63%) and 5-HT(3A) (34.4%) supporting their derivation either from the MGE or from the caudal ganglionic eminence (CGE) and the entopeduncular and dorsal preoptic areas. Together, our results in the barrel cortex of mouse support the view that type I neurons form a specific class of SOM-expressing neurons while type II neurons comprise at least three classes.

11.
J Neurosci Res ; 88(3): 487-99, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19830842

RESUMO

The introduction of a reporter gene into bacterial artificial chromosome (BAC) constructs allows a rapid identification of the cell type expressing the gene of interest. Here we used BAC transgenic mice expressing a tau-sapphire green fluorescent protein (GFP) under the transcriptional control of the neuropeptide Y (NPY) genomic sequence to characterize morphological and electrophysiological properties of NPY-GFP interneurons of the mouse juvenile primary somatosensory cortex. Electrophysiological whole-cell recordings and biocytin injections were performed to allow the morphological reconstruction of the recorded neurons in three dimensions. Ninety-six recorded NPY-GFP interneurons were compared with 39 wild-type (WT) NPY interneurons, from which 23 and 19 were reconstructed, respectively. We observed that 91% of the reconstructed NPY-GFP interneurons had developed an atypical axonal swelling from which emerge numerous ramifications. These abnormalities were very heterogeneous in shape and size. They were immunoreactive for the microtubule-associated protein tau and the lysosomal-associated membrane protein 1 (LAMP1). Moreover, an electron microscopic analysis revealed the accumulation of numerous autophagic and lysosomal vacuoles in swollen axons. Morphological analyses of NPY-GFP interneurons also indicated that their somata were smaller, their entire dendritic tree was thickened and presented a restricted spatial distribution in comparison with WT NPY interneurons. Finally, the morphological defects observed in NPY-GFP interneurons appeared to be associated with alterations of their electrophysiological intrinsic properties. Altogether, these results demonstrate that NPY-GFP interneurons developed dystrophic axonal swellings and severe morphological and electrophysiological defects that could be due to the overexpression of tau-coupled reporter constructs.


Assuntos
Interneurônios/fisiologia , Proteínas Luminescentes/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Neuropeptídeo Y/metabolismo , Córtex Somatossensorial/fisiopatologia , Proteínas tau/metabolismo , Animais , Axônios/patologia , Axônios/fisiologia , Axônios/ultraestrutura , Dendritos/patologia , Dendritos/fisiologia , Dendritos/ultraestrutura , Imunofluorescência , Técnicas In Vitro , Interneurônios/patologia , Interneurônios/ultraestrutura , Proteínas Luminescentes/genética , Lisina/análogos & derivados , Proteínas de Membrana Lisossomal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Imunoeletrônica , Doenças Neurodegenerativas/patologia , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Córtex Somatossensorial/patologia , Córtex Somatossensorial/ultraestrutura , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...