Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cardiovasc Res ; 1(8): 761-774, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36092510

RESUMO

Heart failure (HF) is a leading cause of morbidity and mortality. Studies in animal models and patients with HF revealed a prominent role for CD4+ T cell immune responses in the pathogenesis of HF and highlighted an active crosstalk between cardiac fibroblasts and IFNγ producing CD4+ T cells that results in profibrotic myofibroblast transformation. Whether cardiac fibroblasts concomitantly modulate pathogenic cardiac CD4+ T cell immune responses is unknown. Here we show report that murine cardiac fibroblasts express major histocompatibility complex type II (MHCII) in two different experimental models of cardiac inflammation. We demonstrate that cardiac fibroblasts take up and process antigens for presentation to CD4+ T cells via MHCII induced by IFNγ. Conditional deletion of MhcII in cardiac fibroblasts ameliorates cardiac remodelling and dysfunction induced by cardiac pressure overload. Collectively, we demonstrate that cardiac fibroblasts function as antigen presenting cells (APCs) and contribute to cardiac fibrosis and dysfunction through IFNγ induced MHCII.

2.
Infect Immun ; 89(10): e0017821, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34228487

RESUMO

The Chagas disease parasite Trypanosoma cruzi must extravasate to home in on susceptible cells residing in most tissues. It remains unknown how T. cruzi undertakes this crucial step of its life cycle. We hypothesized that the pathogen exploits the endothelial cell programming leukocytes use to extravasate to sites of inflammation. Transendothelial migration (TEM) starts after inflammatory cytokines induce E-selectin expression and P-selectin translocation on endothelial cells (ECs), enabling recognition by leukocyte ligands that engender rolling cell adhesion. Here, we show that T. cruzi upregulates E- and P-selectins in cardiac ECs to which it binds in a ligand-receptor fashion, whether under static or shear flow conditions. Glycoproteins isolated from T. cruzi (TcEx) specifically recognize P-selectin in a ligand-receptor interaction. As with leukocytes, binding of P-selectin to T. cruzi or TcEx requires sialic acid and tyrosine sulfate, which are pivotal for downstream migration across ECs and extracellular matrix proteins. Additionally, soluble selectins, which bind T. cruzi, block transendothelial migration dose dependently, implying that the pathogen bears selectin-binding ligand(s) that start transmigration. Furthermore, function-blocking antibodies against E- and P-selectins, which act on endothelial cells and not T. cruzi, are exquisite in preventing TEM. Thus, our results show that selectins can function as mediators of T. cruzi transendothelial transmigration, suggesting a pathogenic mechanism that allows homing in of the parasite on targeted tissues. As selectin inhibitors are sought-after therapeutic targets for autoimmune diseases and cancer metastasis, they may similarly represent a novel strategy for Chagas disease therapy.


Assuntos
Selectina E/metabolismo , Células Endoteliais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Selectina-P/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Adesão Celular/fisiologia , Citocinas/metabolismo , Células Endoteliais/parasitologia , Feminino , Humanos , Inflamação/metabolismo , Inflamação/parasitologia , Leucócitos/metabolismo , Leucócitos/parasitologia , Ligantes , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Migração Transendotelial e Transepitelial/fisiologia
3.
J Pharmacol Exp Ther ; 368(1): 11-20, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30348750

RESUMO

Most patients acutely infected with Trypanosoma cruzi undergo short-term structural and functional cardiac alterations that heal without sequelae. By contrast, in patients whose disease progresses to chronic infection, irreversible degenerative chronic Chagas cardiomyopathy (CCC) may develop. To account for the contrast between cardiac regeneration in high-parasitism acute infection and progressive cardiomyopathy in low-parasitism CCC, we hypothesized that T. cruzi expresses repair factors that directly facilitate cardiac regeneration. We investigated, as one such repair factor, the T. cruzi parasite-derived neurotrophic factor (PDNF), known to trigger survival of cardiac myocytes and fibroblasts and upregulate chemokine chemokine C-C motif ligand 2, which promotes migration of regenerative cardiac progenitor cells (CPCs). Using in vivo and in vitro models of Chagas disease, we tested whether T. cruzi PDNF promotes cardiac repair. Quantitative PCR and flow cytometry of heart tissue revealed that stem-cell antigen-1 (Sca-1+) CPCs expand in acute infection in parallel to parasitism. Recombinant PDNF induced survival and expansion of ex vivo CPCs, and intravenous administration of PDNF into naïve mice upregulated mRNA of cardiac stem-cell marker Sca-1. Furthermore, in CCC mice, a 3-week intravenous administration of PDNF protocol induced CPC expansion and reversed left ventricular T-cell accumulation and cardiac remodeling including fibrosis. Compared with CCC vehicle-treated mice, which developed severe atrioventricular block, PDNF-treated mice exhibited reduced frequency and severity of conduction abnormalities. Our findings are in support of the novel concept that T. cruzi uses PDNF to promote mutually beneficial cardiac repair in Chagas disease. This could indicate a possible path to prevention or treatment of CCC.


Assuntos
Bloqueio Atrioventricular/sangue , Bloqueio Atrioventricular/terapia , Doença de Chagas/sangue , Doença de Chagas/terapia , Glicoproteínas/administração & dosagem , Glicoproteínas/sangue , Neuraminidase/administração & dosagem , Neuraminidase/sangue , Administração Intravenosa , Animais , Bloqueio Atrioventricular/fisiopatologia , Doença de Chagas/fisiopatologia , Chlorocebus aethiops , Doença Crônica , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Trypanosoma cruzi/metabolismo , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...