Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Scand J Med Sci Sports ; 34(6): e14672, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887854

RESUMO

Footwear has the potential to reduce soft-tissue vibrations (STV) but responses are highly subject-specific. Recent evidence shows that compressive garments minimizing STV have a beneficial effect on neuromuscular (NM) fatigue. The aim was to determine whether an individualized midsole hardness can minimize STV and NM fatigue during a half marathon. Twenty experienced runners were recruited for three visits: a familiarization session including the identification of midsole minimizing and maximizing STV amplitude (MIN and MAX, respectively), and two half marathon sessions at 95% of speed at the second ventilatory threshold. STV of the gastrocnemius medialis (GM) muscle, running kinetics, foot strike pattern, rating perceived exhaustion (RPE), and midsole liking were recorded every 3 km. NM fatigue was assessed on plantar flexors (PF) before (PRE) and after (POST) the half marathon. At POST, PF central and peripheral alterations and changes in contact time, step frequency, STV median frequency, and impact force frequency as well as foot strike pattern were found in both MIN and MAX. No significant differences in damping, STV main frequency, flight time, duty factor, and loading rate were observed between conditions whatever the time period. During the half marathon, STV amplitude of GM significantly increased over time for the MAX condition (+13.3%) only. Differences between MIN and MAX were identified for RPE and midsole liking. It could be hypothesized that, while significant, the effect of midsole hardness on STV is too low to substantially affect NM fatigue.


Assuntos
Corrida de Maratona , Fadiga Muscular , Músculo Esquelético , Sapatos , Vibração , Humanos , Masculino , Adulto , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Feminino , Corrida de Maratona/fisiologia , Pé/fisiologia , Dureza , Fenômenos Biomecânicos , Corrida/fisiologia , Pessoa de Meia-Idade
2.
Int J Sports Physiol Perform ; 18(2): 209-212, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634310

RESUMO

PURPOSE: Carbon plates have been used to increase running shoes' longitudinal bending stiffness (LBS), leading to reductions in the energy cost of level running (Cr). However, whether or not this is true during uphill (UH) running remains unknown. The aim of our study was to identify the effect of LBS on Cr during UH running. METHODS: Twenty well-trained male runners participated in this study. Cr was determined using gas exchange during nine 4-minute bouts performed using 3 different LBS shoe conditions at 2.22 and 4.44 m/s on level and 2.22 m/s UH (gradient: + 15%) running. All variables were compared using 2-way analyses of variance (LBS × speed/grade effects). RESULTS: There was no significant effect of LBS (F = 2.04; P = .14, ηp2=.11) and no significant LBS × grade interaction (F = 0.31; P = .87, ηp2=.02). Results were characterized by a very large interindividual variability in response to LBS changes. CONCLUSIONS: The current study contributes to a growing body of literature reporting no effect of LBS on Cr during level and UH running. Yet, the very large interindividual differences in response to changes in LBS suggest that increasing shoe LBS may be beneficial for some runners.


Assuntos
Corrida , Sapatos , Humanos , Masculino , Fenômenos Biomecânicos , Corrida/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA