Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(7)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39065606

RESUMO

In the current study, a smart release system responsive to temperature was developed to improve the efficiency of tetracycline (TC) in antibacterial therapy. The nanovesicles designed consist of a non-ionic surfactant, SPAN60, cholesterol and a phase change material (PCM) as a thermoresponsive gating material. Niosomes were prepared using an increasing amount of PCM and characterized in terms of size, zeta potential, colloidal stability and thermoresponsive properties. The vesicles that developed were homogenous in size, had good biocompatibility and stability for up to 3 months and demonstrated thermoresponsive behavior. A low drug leakage was observed at 37 °C, while a rapid release occurred at 42 °C, due to the faster diffusion rate of the drug trough the melted PCM. This controllable drug release capacity allows us to avoid premature drug release, minimizing unwanted and toxic effects and ensuring a long retention time in the nanodevice so that it reaches the infected sites. In addition, TC-loaded niosomes were screened to investigate their antibacterial activity against various Gram-positive and Gram-negative bacteria by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. An interesting temperature-dependent antibacterial activity was observed against some bacterial strains: the niosomes activity against S. epidermis, for example, was improved by the temperature increase, as suggested by a reduction in MIC values from 112.81 to 14.10 µM observed at 37 and 42 °C, respectively. Taken together, the thermoresponsive platform developed allows us to use lower antibiotic amounts while ensuring therapeutic efficacy and, so, will advance the development of a novel antibacterial agent in clinical practice.

2.
Genes (Basel) ; 15(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39062726

RESUMO

Anderson-Fabry disease (AFD) is an X-linked multisystemic disorder with a heterogeneous phenotype, resulting from deficiency of the lysosomal enzyme α-galactosidase A (α-Gal A) and leading to globotriaosylceramide systemic accumulation. Lysosomal storage is not the unique player in organ failure and different mechanisms could drive tissue damage, including endoplasmic reticulum (ER) stress and its related signaling pathway's activation. We identified a new missense variant in the signal peptide of α-GLA gene, c.13 A/G, in a 55-year-old woman affected by chronic kidney disease, acroparesthesia, hypohidrosis, and deafness and exhibiting normal values of lysoGb3 and αGLA activity. The functional study of the new variant performed by its overexpression in HEK293T cells showed an increased protein expression of a key ER stress marker, GRP78, the pro-apoptotic BAX, the negative regulator of cell cycle p21, the pro-inflammatory cytokine, IL1ß, together with pNFkB, and the pro-fibrotic marker, N-cadherin. Transmission electron microscopy showed signs of ER injury and intra-lysosomal inclusions. The proband's PBMC exhibited higher expression of TGFß 1 and pNFkB compared to control. Our findings suggest that the new variant, although it did not affect enzymatic activity, could cause cellular damage by affecting ER homeostasis and promoting apoptosis, inflammation, and fibrosis. Further studies are needed to demonstrate the variant's contribution to cellular and tissue damage.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Mutação de Sentido Incorreto , alfa-Galactosidase , Humanos , Feminino , Estresse do Retículo Endoplasmático/genética , Pessoa de Meia-Idade , Células HEK293 , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo , Sinais Direcionadores de Proteínas/genética , Doença de Fabry/genética , Doença de Fabry/metabolismo , Doença de Fabry/patologia , Transdução de Sinais/genética
3.
J Transl Med ; 22(1): 375, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643121

RESUMO

Maladaptive cardiac hypertrophy contributes to the development of heart failure (HF). The oxidoreductase Selenoprotein T (SELENOT) emerged as a key regulator during rat cardiogenesis and acute cardiac protection. However, its action in chronic settings of cardiac dysfunction is not understood. Here, we investigated the role of SELENOT in the pathophysiology of HF: (i) by designing a small peptide (PSELT), recapitulating SELENOT activity via the redox site, and assessed its beneficial action in a preclinical model of HF [aged spontaneously hypertensive heart failure (SHHF) rats] and against isoproterenol (ISO)-induced hypertrophy in rat ventricular H9c2 and adult human AC16 cardiomyocytes; (ii) by evaluating the SELENOT intra-cardiomyocyte production and secretion under hypertrophied stimulation. Results showed that PSELT attenuated systemic inflammation, lipopolysaccharide (LPS)-induced macrophage M1 polarization, myocardial injury, and the severe ultrastructural alterations, while counteracting key mediators of cardiac fibrosis, aging, and DNA damage and restoring desmin downregulation and SELENOT upregulation in the failing hearts. In the hemodynamic assessment, PSELT improved the contractile impairment at baseline and following ischemia/reperfusion injury, and reduced infarct size in normal and failing hearts. At cellular level, PSELT counteracted ISO-mediated hypertrophy and ultrastructural alterations through its redox motif, while mitigating ISO-triggered SELENOT intracellular production and secretion, a phenomenon that presumably reflects the extent of cell damage. Altogether, these results indicate that SELENOT could represent a novel sensor of hypertrophied cardiomyocytes and a potential PSELT-based new therapeutic approach in myocardial hypertrophy and HF.


Assuntos
Insuficiência Cardíaca , Selenoproteínas , Tiorredoxina Dissulfeto Redutase , Adulto , Idoso , Animais , Humanos , Ratos , Insuficiência Cardíaca/metabolismo , Hipertrofia/metabolismo , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Miócitos Cardíacos/metabolismo , Oxirredução , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
4.
J Transl Med ; 22(1): 208, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413989

RESUMO

BACKGROUND: Mitochondrial alterations, often dependent on unbalanced mitochondrial dynamics, feature in the pathobiology of human cancers, including multiple myeloma (MM). Flavanones are natural flavonoids endowed with mitochondrial targeting activities. Herein, we investigated the capability of Hesperetin (Hes) and Naringenin (Nar), two aglycones of Hesperidin and Naringin flavanone glycosides, to selectively target Drp1, a pivotal regulator of mitochondrial dynamics, prompting anti-MM activity. METHODS: Molecular docking analyses were performed on the crystallographic structure of Dynamin-1-like protein (Drp1), using Hes and Nar molecular structures. Cell viability and apoptosis were assessed in MM cell lines, or in co-culture systems with primary bone marrow stromal cells, using Cell Titer Glo and Annexin V-7AAD staining, respectively; clonogenicity was determined using methylcellulose colony assays. Transcriptomic analyses were carried out using the Ion AmpliSeq™ platform; mRNA and protein expression levels were determined by quantitative RT-PCR and western blotting, respectively. Mitochondrial architecture was assessed by transmission electron microscopy. Real time measurement of oxygen consumption was performed by high resolution respirometry in living cells. In vivo anti-tumor activity was evaluated in NOD-SCID mice subcutaneously engrafted with MM cells. RESULTS: Hes and Nar were found to accommodate within the GTPase binding site of Drp1, and to inhibit Drp1 expression and activity, leading to hyperfused mitochondria with reduced OXPHOS. In vitro, Hes and Nar reduced MM clonogenicity and viability, even in the presence of patient-derived bone marrow stromal cells, triggering ER stress and apoptosis. Interestingly, Hes and Nar rewired MM cell metabolism through the down-regulation of master transcriptional activators (SREBF-1, c-MYC) of lipogenesis genes. An extract of Tacle, a Citrus variety rich in Hesperidin and Naringin, was capable to recapitulate the phenotypic and molecular perturbations of each flavanone, triggering anti-MM activity in vivo. CONCLUSION: Hes and Nar inhibit proliferation, rewire the metabolism and induce apoptosis of MM cells via antagonism of the mitochondrial fission driver Drp1. These results provide a framework for the development of natural anti-MM therapeutics targeting aberrant mitochondrial dependencies.


Assuntos
Flavanonas , Hesperidina , Mieloma Múltiplo , Camundongos , Animais , Humanos , Hesperidina/farmacologia , Dinâmica Mitocondrial , Mieloma Múltiplo/tratamento farmacológico , Simulação de Acoplamento Molecular , Camundongos Endogâmicos NOD , Camundongos SCID , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Flavanonas/química
5.
Eur J Cell Biol ; 102(4): 151354, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37604089

RESUMO

Alendronate (ALN) is a second-generation bisphosphonate widely used for osteoporosis and cancer-induced bone lesions. Many studies have confirmed a strong relationship between osteonecrosis of the jaws (ONJ) development and oral bisphosphonates, especially ALN, although the molecular mechanisms underlying this pathology have not yet been elucidated. The reduction in bone turnover and vascularization usually observed in ONJ are the result of ALN action on different cell types harboured in oral microenvironment, such as osteoclasts, endothelial cells, and periodontal ligament stem cells (PDLSCs). In this perspective, the present study aims to investigate the effects of different ALN concentrations (2 µM, 5 µM, 10 µM, 25 µM, 50 µM) on the phenotype and functional properties of human PDLSCs (hPDLSCs). hPDLSCs showed a decrease in cell viability (MTT assay) only when treated with ALN concentration of 10 µM or larger for 48 h and 72 h. Cell cycle analysis revealed a moderate increase in proportion of S-phase cells after exposure to low ALN concentration (2-5 µM), an effect that was reverted after exposure to 10-50 µM ALN. Conversely, cell death was evidenced via Annexin V/PI assay at very high concentration of ALN (50 µM) after 4 days of treatment. In addition, we explored whether the effects of ALN on hPDLSCs growth and survival can be mediated by its ability to modulate oxidative stress. To this, we quantified the intracellular ROS amount and lipid peroxidation by using DCF probe and Bodipy staining, respectively. Flow cytometry analysis showed that ALN induced a dose-dependent reduction of intracellular oxidative stress and lipid peroxidation upon treatment with low concentrations at both 48 h and 72 h. Increased levels of oxidative stress was reported at 50 µM ALN and was also confirmed via TEM analysis. Despite the stability of the cellular immunophenotype, hPDLSCs showed impaired mobility after ALN exposure. Chronic exposure (7-14 days) to ALN in the range of 2-10 µM significantly decreased the expression of the differentiation-related factors ALP, RUNX2, COLI, and OPN as well as the osteogenic ability of hPDLSCs compared with untreated cells. Conversely, higher doses were found to be neutral. Our findings indicated that the effects of ALN on hPDLSCs behavior are dose-dependent and suggest a role for oxidative stress in ALN-induced cell death that may lead to novel therapeutic approaches for ONJ.


Assuntos
Alendronato , Ligamento Periodontal , Humanos , Ligamento Periodontal/metabolismo , Alendronato/farmacologia , Alendronato/metabolismo , Difosfonatos/metabolismo , Difosfonatos/farmacologia , Células Endoteliais , Diferenciação Celular , Células-Tronco/metabolismo , Células Cultivadas , Proliferação de Células
6.
J Exp Clin Cancer Res ; 42(1): 164, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37434266

RESUMO

BACKGROUND: The receptor for advanced glycation-end products (RAGE) and its ligands have been implicated in obesity and associated inflammatory processes as well as in metabolic alterations like diabetes. In addition, RAGE-mediated signaling has been reported to contribute to the metastatic progression of breast cancer (BC), although mechanistic insights are still required. Here, we provide novel findings regarding the transcriptomic landscape and the molecular events through which RAGE may prompt aggressive features in estrogen receptor (ER)-positive BC. METHODS: MCF7 and T47D BC cells stably overexpressing human RAGE were used as a model system to evaluate important changes like cell protrusions, migration, invasion and colony formation both in vitro through scanning electron microscopy, clonogenic, migration and invasion assays and in vivo through zebrafish xenografts experiments. The whole transcriptome of RAGE-overexpressing BC cells was screened by high-throughput RNA sequencing. Thereafter, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses allowed the prediction of potential functions of differentially expressed genes (DEGs). Flow cytometry, real time-PCR, chromatin immunoprecipitation, immunofluorescence and western blot assays were performed to investigate the molecular network involved in the regulation of a novel RAGE target gene namely EphA3. The clinical significance of EphA3 was explored in the TCGA cohort of patients through the survivALL package, whereas the pro-migratory role of EphA3 signaling was ascertained in both BC cells and cancer-associated fibroblasts (CAFs). Statistical analysis was performed by t-tests. RESULTS: RNA-seq findings and GSEA analysis revealed that RAGE overexpression leads to a motility-related gene signature in ER-positive BC cells. Accordingly, we found that RAGE-overexpressing BC cells exhibit long filopodia-like membrane protrusions as well as an enhanced dissemination potential, as determined by the diverse experimental assays. Mechanistically, we established for the first time that EphA3 signaling may act as a physical mediator of BC cells and CAFs motility through both homotypic and heterotypic interactions. CONCLUSIONS: Our data demonstrate that RAGE up-regulation leads to migratory ability in ER-positive BC cells. Noteworthy, our findings suggest that EphA3 may be considered as a novel RAGE target gene facilitating BC invasion and scattering from the primary tumor mass. Overall, the current results may provide useful insights for more comprehensive therapeutic approaches in BC, particularly in obese and diabetic patients that are characterized by high RAGE levels.


Assuntos
Neoplasias da Mama , Receptor para Produtos Finais de Glicação Avançada , Receptor EphA3 , Animais , Feminino , Humanos , Neoplasias da Mama/genética , Receptor EphA3/genética , Transdução de Sinais , Peixe-Zebra/genética
7.
Cardiovasc Pathol ; 66: 107560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37453592

RESUMO

In recent years, there has been an explosive growth of research to decipher the pathobiologic relevance of cell death in the development and progression of various cardiovascular disorders such as arterial remodeling and atherosclerosis. High rates of cell death have been reported in animal models, particularly following balloon catheter injury. Also, in humans there is considerable evidence indicating a close connection between cell death and atherosclerosis. In this regard, diverse biochemical and molecular analysis have suggested that intraplaque cells preferentially die by apoptosis, a mode of cell death considered to be active, highly regulated and programmed. In contrast to apoptosis, necrosis has been classically defined as an uncontrolled form of cell death that can occur in response to chemical or physical insults such as trauma, infection, toxins, or lack of blood supply. Necrosis has long been known to be present within atherosclerotic plaques but to date it is still less well understood and characterized than apoptosis. In addition, although electron microscopy (EM) remains essential in cell death research, only a very small proportion of studies deal with the ultrastructural aspects of cell death and/or include EM images to support their findings. As a consequence, many features of cell death modes in human atherosclerosis have not yet been thoroughly investigated and defined. The present study was undertaken to provide an ultrastructural description of the route/s by which intraplaque cells can die also suggesting novel insights for future research.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Humanos , Apoptose , Necrose/patologia , Aterosclerose/patologia , Microscopia Eletrônica
9.
Cells ; 12(7)2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-37048116

RESUMO

Cardiac lipotoxicity is an important contributor to cardiovascular complications during obesity. Given the fundamental role of the endoplasmic reticulum (ER)-resident Selenoprotein T (SELENOT) for cardiomyocyte differentiation and protection and for the regulation of glucose metabolism, we took advantage of a small peptide (PSELT), derived from the SELENOT redox-active motif, to uncover the mechanisms through which PSELT could protect cardiomyocytes against lipotoxicity. To this aim, we modeled cardiac lipotoxicity by exposing H9c2 cardiomyocytes to palmitate (PA). The results showed that PSELT counteracted PA-induced cell death, lactate dehydrogenase release, and the accumulation of intracellular lipid droplets, while an inert form of the peptide (I-PSELT) lacking selenocysteine was not active against PA-induced cardiomyocyte death. Mechanistically, PSELT counteracted PA-induced cytosolic and mitochondrial oxidative stress and rescued SELENOT expression that was downregulated by PA through FAT/CD36 (cluster of differentiation 36/fatty acid translocase), the main transporter of fatty acids in the heart. Immunofluorescence analysis indicated that PSELT also relieved the PA-dependent increase in CD36 expression, while in SELENOT-deficient cardiomyocytes, PA exacerbated cell death, which was not mitigated by exogenous PSELT. On the other hand, PSELT improved mitochondrial respiration during PA treatment and regulated mitochondrial biogenesis and dynamics, preventing the PA-provoked decrease in PGC1-α and increase in DRP-1 and OPA-1. These findings were corroborated by transmission electron microscopy (TEM), revealing that PSELT improved the cardiomyocyte and mitochondrial ultrastructures and restored the ER network. Spectroscopic characterization indicated that PSELT significantly attenuated infrared spectral-related macromolecular changes (i.e., content of lipids, proteins, nucleic acids, and carbohydrates) and also prevented the decrease in membrane fluidity induced by PA. Our findings further delineate the biological significance of SELENOT in cardiomyocytes and indicate the potential of its mimetic PSELT as a protective agent for counteracting cardiac lipotoxicity.


Assuntos
Miócitos Cardíacos , Palmitatos , Palmitatos/toxicidade , Palmitatos/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo
10.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108058

RESUMO

Atherosclerosis is a multifactorial chronic disease triggered and sustained by different risk factors such as dyslipidemia, hypertension, diabetes mellitus (DM), smoke, elevated homocysteine, and hormones [...].


Assuntos
Aterosclerose , Diabetes Mellitus , Hipertensão , Humanos , Aterosclerose/genética , Aterosclerose/terapia , Fatores de Risco , Hipertensão/complicações , Biologia Molecular
11.
Nanomaterials (Basel) ; 13(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36839113

RESUMO

Metallic nanoparticles show plasmon resonance phenomena when irradiated with electromagnetic radiation of a suitable wavelength, whose value depends on their composition, size, and shape. The damping of the surface electron oscillation causes a release of heat, which causes a large increase in local temperature. Furthermore, this increase is enhanced when nanoparticle aggregation phenomena occur. Local temperature increase is extensively exploited in photothermal therapy, where light is used to induce cellular damage. To activate the plasmon in the visible range, we synthesized 50 nm diameter spherical gold nanoparticles (AuNP) coated with polyethylene glycol and administered them to an E. coli culture. The experiments were carried out, at different gold nanoparticle concentrations, in the dark and under irradiation. In both cases, the nanoparticles penetrated the bacterial wall, but a different toxic effect was observed; while in the dark we observed an inhibition of bacterial growth of 46%, at the same concentration, under irradiation, we observed a bactericidal effect (99% growth inhibition). Photothermal measurements and SEM observations allowed us to conclude that the extraordinary effect is due to the formation, at low concentrations, of a light-induced cluster of gold nanoparticles, which does not form in the absence of bacteria, leading us to the conclusion that the bacterium wall catalyzes the formation of these clusters which are ultimately responsible for the significant increase in the measured temperature and cause of the bactericidal effect. This photothermal effect is achieved by low-power irradiation and only in the presence of the pathogen: in its absence, the lack of gold nanoparticles clustering does not lead to any phototoxic effect. Therefore, it may represent a proof of concept of an innovative nanoscale pathogen responsive system against bacterial infections.

12.
Antioxidants (Basel) ; 12(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36830052

RESUMO

Cancer cells fuel growth and energy demands by increasing their NAD+ biosynthesis dependency, which therefore represents an exploitable vulnerability for anti-cancer strategies. CD38 is a NAD+-degrading enzyme that has become crucial for anti-MM therapies since anti-CD38 monoclonal antibodies represent the backbone for treatment of newly diagnosed and relapsed multiple myeloma patients. Nevertheless, further steps are needed to enable a full exploitation of these strategies, including deeper insights of the mechanisms by which CD38 promotes tumorigenesis and its metabolic additions that could be selectively targeted by therapeutic strategies. Here, we present evidence that CD38 upregulation produces a pervasive intracellular-NAD+ depletion, which impairs mitochondrial fitness and enhances oxidative stress; as result, genetic or pharmacologic approaches that aim to modify CD38 surface-level prime MM cells to NAD+-lowering agents. The molecular mechanism underlying this event is an alteration in mitochondrial dynamics, which decreases mitochondria efficiency and triggers energetic remodeling. Overall, we found that CD38 handling represents an innovative strategy to improve the outcomes of NAD+-lowering agents and provides the rationale for testing these very promising agents in clinical studies involving MM patients.

13.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499481

RESUMO

Atherosclerosis is a chronic inflammatory disease of large- and medium-sized arteries involving aberrant immune-inflammatory responses, dysfunctional molecular pathways, and impaired tissue repair mechanisms [...].


Assuntos
Aterosclerose , Humanos , Aterosclerose/terapia , Aterosclerose/tratamento farmacológico , Artérias/metabolismo , Biologia Molecular
14.
Pharmaceutics ; 14(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36297625

RESUMO

Lidocaine is a local anaesthetic drug with an amphiphilic structure able to self-associate, under certain conditions, in molecular aggregates playing the role of both carrier and drug. The aim of this study was to determine the optimal conditions for obtaining vesicular carriers, called lidosomes. The new formulations were obtained using both lidocaine and lidocaine hydrochloride and different hydration medias (distilled water, acid, and basic aqueous solution). Lidosomes formulations were characterized in terms of size, ζ-potential, drug retained, stability formulation, and ex vivo permeation profile. Moreover, lidosomes were incorporated in two different gel structures: one based on carboxymethylcellulose and one based on pluronic F-127 to achieve suitable properties for a topical application. Results obtained showed that lidocaine showed a better performance to aggregate in vesicular carriers in respect to hydrochloride form. Consequently, only formulations comprised of lidocaine were studied in terms of skin permeation performance and as carriers of another model drug, capsaicin, for a potential combined therapy. Lidocaine, when in form of vesicular aggregates, acted as percutaneous permeation enhancer showing better permeation profiles with respect to drug solutions. Moreover, lidosomes created a significant drug depot into the skin from which the drug was available for a prolonged time, a suitable feature for a successful local therapy.

15.
Exp Hematol Oncol ; 11(1): 54, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096954

RESUMO

Activating G protein-coupled estrogen receptor 1 (GPER1) is an attractive therapeutic strategy for treating a variety of human diseases including cancer. Here, we show that GPER1 is significantly upregulated in tumor cells from different cohorts of Waldenström Macroglobulinemia (WM) patients compared to normal B cells. Using the clinically applicable GPER1-selective small-molecule agonist G-1 (also named Tespria), we found that pharmacological activation of GPER1 leads to G2/M cell cycle arrest and apoptosis both in vitro and in vivo in animal models, even in the context of the protective bone marrow milieu. Activation of GPER1 triggered the TP53 pathway, which remains actionable during WM progression. Thus, this study identifies a novel therapeutic target in WM and paves the way for the clinical development of the GPER1 agonist G-1.

16.
Front Oncol ; 12: 868351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433479

RESUMO

Objectives: Developing novel therapeutic approaches to defeat chemoresistance is the major goal of ovarian cancer research. Induction of ferroptosis has shown promising antitumor effects in ovarian cancer cells, but the existence of still undefined genetic and metabolic determinants of susceptibility has so far limited the application of ferroptosis inducers in vivo. Methods: Erastin and/or the iron compound ferlixit were used to trigger ferroptosis in HEY, COV318, PEO4, and A2780CP ovarian cancer cell lines. Cell viability and cell death were measured by MTT and PI flow cytometry assay, respectively. The "ballooning" phenotype was tested as ferroptosis specific morphological feature. Mitochondrial dysfunction was evaluated based on ultrastructural changes, mitochondrial ROS, and mitochondrial membrane polarization. Lipid peroxidation was tested through both C11-BODIPY and malondialdehyde assays. VDAC2 and GPX4 protein levels were quantified as additional putative indicators of mitochondrial dysfunction or lipid peroxidation, respectively. The effect of erastin/ferlixit treatments on iron metabolism was analyzed by measuring intracellular labile iron pool and ROS. FtH and NCOA4 were measured as biomarkers of ferritinophagy. Results: Here, we provide evidence that erastin is unable to induce ferroptosis in a series of ovarian cancer cell lines. In HEY cells, provided with a high intracellular labile iron pool, erastin treatment is accompanied by NCOA4-mediated ferritinophagy and mitochondrial dysfunction, thus triggering ferroptosis. In agreement, iron chelation counteracts erastin-induced ferroptosis in these cells. COV318 cells, with low baseline intracellular labile iron pool, appear resistant to erastin treatment. Notably, the use of ferlixit sensitizes COV318 cells to erastin through a NCOA4-independent intracellular iron accumulation and mitochondrial dysfunction. Ferlixit alone mimics erastin effects and promotes ferroptosis in HEY cells. Conclusion: This study proposes both the baseline and the induced intracellular free iron level as a significant determinant of ferroptosis sensitivity and discusses the potential use of ferlixit in combination with erastin to overcome ferroptosis chemoresistance in ovarian cancer.

17.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408804

RESUMO

Atherosclerosis is a chronic and progressive inflammatory disease of the arteries initiated by the functional and structural alteration of the endothelial layer responsible for promoting the subendothelial retention of modified low-density lipoproteins (LDL), which in turn generate an active proinflammatory state in which environmental factors, such as oxidizing agents, growth factors, cytokines, monocyte-macrophages and smooth muscle cells (SMCs), work in cooperation to promote the formation of plaque [...].


Assuntos
Aterosclerose , Placa Aterosclerótica , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/terapia , Humanos , Lipoproteínas LDL/metabolismo , Biologia Molecular , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/terapia
18.
Clin Transl Med ; 11(11): e516, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34841688

RESUMO

Among the prognostic and predictive biomarkers of breast cancer (BC), the role of estrogen receptor (ER)α wild-type has been acknowledged, although the action of certain ERα splice variants has not been elucidated. Insulin/insulin receptor (IR) axis has also been involved in the progression and metastasis of BC. For instance, hyperinsulinemia, which is often associated with obesity and type 2 diabetes, may be a risk factor for BC. Similarly, an aberrant expression of IR or its hyperactivation may correlate with aggressive BC phenotypes. In the present study, we have shown that a novel naturally immortalized BC cell line (named BCAHC-1) is characterized by a unique expression of 46 kDa ERα splice variant (ERα46) along with IR. Moreover, we have shown that a multifaceted crosstalk between ERα46 and IR occurs in BCAHC-1 cells upon estrogen and insulin exposure for growth and pulmonary metastasis. Through high-throughput RNA sequencing analysis, we have also found that the cytokine interleukin-11 (IL11) is the main factor linking BCAHC-1 cells to breast cancer-associated fibroblasts (CAFs). In particular, we have found that IL11 induced by estrogens and insulin in BCAHC-1 cells regulates pro-tumorigenic genes of the "extracellular matrix organization" signaling pathway, such as ICAM-1 and ITGA5, and promotes both migratory and invasive features in breast CAFs. Overall, our results may open a new scientific avenue to identify additional prognostic and therapeutic targets in BC.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Fibroblastos Associados a Câncer/metabolismo , Receptor alfa de Estrogênio/metabolismo , Interleucina-11/farmacologia , Receptor de Insulina/farmacologia , Movimento Celular/efeitos dos fármacos , Receptor alfa de Estrogênio/uso terapêutico , Feminino , Perfilação da Expressão Gênica , Humanos , Interleucina-11/uso terapêutico , Pessoa de Meia-Idade , Receptor de Insulina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
19.
Nanoscale ; 13(40): 16885-16899, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34528987

RESUMO

The present research study reports the development of plastic antibodies based on Molecularly Imprinted Polymers (MIPs) capable of selectively binding a portion of the novel coronavirus SARS-CoV-2 spike protein. Indeed, molecular imprinting represents a very promising and attractive technology for the synthesis of MIPs characterized by specific recognition abilities for a target molecule. Given these characteristics, MIPs can be considered tailor-made synthetic antibodies obtained by a templating process. After in silico analysis, imprinted nanoparticles were synthesized by inverse microemulsion polymerization and their ability to prevent the interaction between ACE2 and the receptor-binding domain of SARS-CoV-2 was investigated. Of relevance, the developed synthetic antibodies are capable of significantly inhibiting virus replication in Vero cell culture, suggesting their potential application in the treatment, prevention and diagnosis of SARS-CoV-2 infection.


Assuntos
COVID-19 , Polímeros Molecularmente Impressos , Humanos , Plásticos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
20.
Antioxidants (Basel) ; 9(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143213

RESUMO

The impaired ability to feed properly, evident in oncologic, elderly, and dysphagic patients, may result in malnutrition and sarcopenia. Increasing the consumption of dietary proteins by functional foods and enriching their composition by adding beneficial nutrients may represent an adjuvant therapy. We aimed to evaluate the safety and the positive effects of a standard diet (SD) supplemented with whey-derived protein puddings (WDPP), with appropriate rheological properties, and hemp seed oil (HSO), rich in polyphenols. Rats were assigned to SD, WDPP, WDPP plus hemp seed oil (HSOP), and HSO supplemented diets for eight weeks. "Anthropometric", metabolic, and biochemical variables, oxidative stress, tissue injury, liver histology, and cardiac susceptibility to ischemia/reperfusion were analyzed. All the supplementations did not induce significant changes in biochemical and metabolic variables, also in relation to glucose tolerance, and livers did not undergo morphological alteration and injury. An improvement of cardiac post-ischemic function in the Langendorff perfused heart model and a reduction of infarct size were observed in WDPP and HSOP groups, thanks to their antioxidant effects and the activation of Akt- and AMPK-dependent protective pathways. Data suggest that (i) functional foods enriched with WDPP and HSOP may be used to approach malnutrition and sarcopenia successfully under disabling conditions, also conferring cardioprotection, and that (ii) adequate rheological properties could positively impact dysphagia-related problems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA