Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 25(4): 3709-3721, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28241583

RESUMO

The performance of sensitive spectroscopic methods in the mid-IR is often limited by fringing due to parasitic etalons and the background noise in mid-infrared detectors. In particular, the technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy (NICE-OHVMS), which is capable of determining the frequencies of strong rovibrational transitions of molecular ions with sub-MHz uncertainty, needs improved sensitivity in order to probe weaker transitions. In this work, we have implemented up-conversion detection with NICE-OHVMS in the 3.2 - 3.9 µm region to enable the use of faster and more sensitive detectors which cover visible wavelengths. The higher bandwidth enabled detection at optimized heterodyne frequencies, which increased the overall signal from the H3+ cation by a factor of three and was able to resolve sub-Doppler features which had previously overlapped. Also, we demonstrate the effectiveness of Brewster-plate spoilers to remove fringes due to parasitic etalons in a cavity enhanced technique. Together, these improvements reduced the instrument's noise equivalent absorption to 5.9×10-11 cm-1 Hz-1/2, which represents a factor of 34 improvement in sensitivity compared to previous implementations of NICE-OHVMS. This work will enable extended high-precision spectroscopic surveys of H3+ and other important molecular ions.

2.
Rev Sci Instrum ; 87(6): 063111, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27370430

RESUMO

Concentration-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is implemented for the first time on a continuous gas-flow pinhole supersonic expansion discharge source for the study of cooled molecular ions. The instrument utilizes a continuous-wave optical parametric oscillator easily tunable from 2.5 to 3.9 µm and demonstrates a noise equivalent absorption of ∼1 × 10(-9) cm(-1). The effectiveness of concentration-modulated NICE-OHMS is tested through the acquisition of transitions in the ν1 fundamental band of HN2 (+) centered near 3234 cm(-1), with a signal-to-noise of ∼40 obtained for the strongest transitions. The technique is used to characterize the cooling abilities of the supersonic expansion discharge source itself, and a Boltzmann analysis determines a rotational temperature of ∼29 K for low rotational states of HN2 (+). Further improvements are discussed that will enable concentration-modulated NICE-OHMS to reach its full potential for the detection of molecular ions formed in supersonic expansion discharges.

3.
J Chem Phys ; 141(10): 101101, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-25217893

RESUMO

The hydrohelium cation, HeH(+), serves as an important benchmark for ab initio calculations that take into account non-adiabatic, relativistic, and quantum electrodynamic effects. Such calculations are capable of predicting molecular transitions to an accuracy of ~300 MHz or less. However, in order to continue to push the boundaries on these calculations, new measurements of these transitions are required. Here we measure seven rovibrational transitions in the fundamental vibrational band to a precision of ~1 MHz using the technique of Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy. These newly measured transitions are included in a fit to the rotation-vibration term values to derive refined spectroscopic constants in the v = 0 and v = 1 vibrational states, as well as to calculate rotation-vibration energy levels with high precision.

4.
J Chem Phys ; 139(16): 164201, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24182022

RESUMO

We present a versatile new instrument capable of measuring rovibrational transition frequencies of molecular ions with sub-MHz accuracy and precision. A liquid-nitrogen cooled positive column discharge cell, which can produce large column densities of a wide variety of molecular ions, is probed with sub-Doppler spectroscopy enabled by a high-power optical parametric oscillator locked to a moderate finesse external cavity. Frequency modulation (heterodyne) spectroscopy is employed to reduce intensity fluctuations due to the cavity lock, and velocity modulation spectroscopy permits ion-neutral discrimination. The relatively narrow Lamb dips are precisely and accurately calibrated using an optical frequency comb. This method is completely general as it relies on the direct measurement of absorption or dispersion of rovibrational transitions. We expect that this new approach will open up many new possibilities: from providing new benchmarks for state-of-the-art ab initio calculations to supporting astronomical observations to helping assign congested spectra by combination differences. Herein, we describe the instrument in detail and demonstrate its performance by measuring ten R-branch transitions in the ν2 band of H3(+), two transitions in the ν1 band of HCO(+), and the first sub-Doppler transition of CH5(+).

5.
J Phys Chem A ; 117(39): 10034-40, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23758579

RESUMO

Spectroscopy of the ν1 band of the astrophysically relevant ion HCO(+) is performed with an optical parametric oscillator calibrated with an optical frequency comb. The sub-MHz accuracy of this technique was confirmed by performing a combination differences analysis with the acquired rovibrational data and comparing the results to known ground-state rotational transitions. A similar combination differences analysis was performed from the same data set to calculate the previously unobserved rotational spectrum of the ν1 vibrationally excited state with precision sufficient for astronomical detection. Initial results of cavity-enhanced sub-Doppler spectroscopy are also presented and hold promise for further improving the accuracy and precision in the near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...