Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutr Res ; 35(6): 512-22, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25963123

RESUMO

Renal dysfunction is a severe complication that is caused by diabetes mellitus. Many factors associate the progression of this complication with high levels of proinflammatory and pro-oxidant substances, such as advanced glycation end products (AGEs), which form a heterogeneous group of compounds that can accumulate in tissues such as retinas, joints, and kidneys. The hypothesis of this study is that n-3 polyunsaturated fatty acids (n-3 PUFAs) have a nephroprotective effect on rats after exposing them to a combination of 2 protocols that increase the AGE amounts: a high-fat diet enriched with AGEs and a diabetes rat model. Adult Wistar rats were divided into 6 groups that received the following diets for 4 weeks: (1) control group; 2) HAGE: high AGE fat-containing diet group; (3) HAGE + n-3: high AGE fat-containing diet plus n-3 PUFAs group; (4) diabetic group; (5) Db + HAGE: high AGE fat-containing diet diabetic group; and (6) Db + HAGE + n-3: high AGE fat-containing diet plus n-3 PUFAs diabetic group. Diabetes mellitus was induced by an intraperitoneal injection of alloxan (150 mg kg(-1)). In diabetic and nondiabetic rats, the high HAGE fat-containing diet increased the serum creatinine, tumor necrosis factor-α, thiobarbituric acid reactive substances, and reactive oxygen species levels, as well as the superoxide dismutase/catalase + glutathione peroxidase ratio and the superoxide dismutase 2 and receptor for advanced glycation end products immunocontent of the kidneys. n-3 Polyunsaturated fatty acids attenuated these alterations and influenced the receptor for advanced glycation end products/oxidative stress/tumor necrosis factor-α axis. In summary, this study showed that the extrinsic AGE pathway (HAGE diet) had a greater effect on renal metabolism than the intrinsic AGE pathway (diabetes induction) and that n-3 PUFAs appear to prevent renal dysfunction via antioxidant and anti-inflammatory pathways.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Dieta , Ácidos Graxos Ômega-3/uso terapêutico , Produtos Finais de Glicação Avançada/sangue , Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Creatinina/sangue , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/sangue , Ácidos Graxos Ômega-3/farmacologia , Rim/metabolismo , Masculino , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico , Fator de Necrose Tumoral alfa/sangue
2.
Cell Biochem Funct ; 32(1): 16-23, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23475531

RESUMO

The presence of phenolic compounds in fruit- and vegetable-rich diets has attracted researchers' attention due to their health-promoting effects. The objective of this study was to evaluate the effects of purple pitanga (Eugenia uniflora L.) extract on cell proliferation, viability, mitochondrial membrane potential, cell death and cell cycle in murine activated hepatic stellate cells (GRX). Cell viability by 3-(4,5-dimethylthiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was significantly decreased on cells treated with 50 and 100 µg ml(-1) of purple pitanga extract for 48 and 72 h, and the percentage of dead cell stained with 7-amino-actinomycin D was significantly higher in treated cells. The reduction of cell proliferation was dose dependent, and we also observed alterations on cell cycle progression. At all times studied, GRX cells treated with 50 and 100 µg ml(-1) of purple pitanga showed a significant reduction in cellular mitochondrial content as well as a decrease in mitochondrial membrane potential. Furthermore, our results indicated that purple pitanga extract induces early and late apoptosis/necrosis and necrotic death in GRX cells. This is the first report describing the antiproliferative, cytotoxic and apoptotic activity for E. uniflora fruits in hepatic stellate cells. The present study provides a foundation for the prevention and treatment of liver fibrosis, and more studies will be carried to elucidate this effect.


Assuntos
Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Syzygium/química , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Células Estreladas do Fígado/citologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Schistosoma mansoni
3.
Cell Biochem Funct ; 31(8): 636-42, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23316007

RESUMO

Long-chain polyunsaturated n-3 fatty acids (n-3 LCPUFAs) have hypolipidemic effects and modulate intermediary metabolism to prevent or reverse insulin resistance in a way that is not completely elucidated. Here, effects of these fatty acids on the lipid profile, phosphoenolpyruvate carboxykinase (PEPCK) activity, lipid synthesis from glucose in epididymal adipose tissue (Ep-AT) and liver were investigated. Male rats were fed a high-sucrose diet (SU diet), containing either sunflower oil or a mixture of sunflower and fish oil (SU-FO diet), and the control group was fed a standard diet. After 13 weeks, liver, adipose tissue and blood were harvested and analysed. The dietary n-3 LCPUFAs prevented sucrose-induced increase in adiposity and serum free fat acids, serum and hepatic triacylglycerol and insulin levels. Furthermore, these n-3 LCPUFAs decreased lipid synthesis from glucose and increased PEPCK activity in the Ep-AT of rats fed the SU-FO diet compared to those fed the SU diet, besides reducing lipid synthesis from glucose in hepatic tissue. Thus, the inclusion of n-3 LCPUFAs in the diet may be beneficial for the prevention or attenuation of dyslipidemia and insulin resistance, and for reducing the risk of related chronic diseases.


Assuntos
Tecido Adiposo/metabolismo , Sacarose Alimentar/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/farmacologia , Glucose/metabolismo , Lipídeos/biossíntese , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Sacarose Alimentar/farmacologia , Suplementos Nutricionais , Ativação Enzimática/efeitos dos fármacos , Glucose/química , Masculino , Ratos , Ratos Wistar
4.
Mol Cell Biochem ; 361(1-2): 151-60, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21989716

RESUMO

Ω3-Polyunsaturated fatty acids (Ω3-PUFAs) are known to act as hypolipidaemics, but the literature is unclear about the effects that Ω3-PUFAs have on oxidative stress in obese and diabetic patients. In this study, our aim was to investigate the effects of Ω3-PUFAs on oxidative stress, including antioxidant enzyme activity and hepatic lipid and glycogen metabolism in the livers of diabetic and non-diabetic rats fed on a high fat thermolyzed diet. Rats were divided into six groups: (1) the control group (C), (2) the control diabetic group (D), (3) the high fat thermolyzed diet group (HFTD), which were fed a diet that was enriched in fat that was heated for 60 min at 180°C, (4) the high fat thermolyzed diet diabetic group (D + HFTD), (5) the high fat thermolyzed diet + Ω3 polyunsaturated fatty acid group (HFTD + Ω3), and (6) the high fat thermolyzed diet + Ω3 polyunsaturated fatty acid diabetic group (D + HFTD + Ω3). The most important finding of this study was that Ω3-PUFAs are able to reduce triglycerides, non-esterified fatty acid, lipoperoxidation levels, advanced glycation end products, SOD/CAT enzymatic ratio, and CAT immunocontent and increase SOD2 levels in the livers of diabetic rats fed with a HFTD. However, Ω3-PUFAs did not alter the observed levels of protein damage, blood glucose, or glycogen metabolism in the liver. These findings suggest that Ω3-PUFAs may represent an important auxiliary adjuvant in combating some diseases like diabetes mellitus, insulin resistance, and non-alcoholic fatty liver disease.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Glicogênio/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos , Fígado/metabolismo , Adiposidade , Animais , Catalase/metabolismo , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/fisiopatologia , Dieta Hiperlipídica , Produtos Finais de Glicação Avançada/sangue , Fígado/enzimologia , Fígado/fisiopatologia , Lisina/análogos & derivados , Lisina/sangue , Masculino , Estresse Oxidativo , Carbonilação Proteica , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
5.
Hippocampus ; 21(10): 1082-92, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20824731

RESUMO

Increasing evidence indicates that physical exercise induces adaptations at the cellular, molecular, and systemic levels that positively affect the brain. Insulin plays important functional roles within the brain that are mediated by insulin-receptor (IR) signaling. In the hippocampus, insulin improves synaptic plasticity, memory formation, and learning via direct modulation of GABAergic and glutamatergic receptors. Separately, physical exercise and central insulin administration exert relevant roles in cognitive function. We here use CF1 mice to investigate (i) the effects of voluntary exercise on hippocampal insulin signaling and memory performance and (ii) whether central insulin administration alters the effects of exercise on hippocampal insulin signaling and memory performance. Adult mice performed 30 days of voluntary exercise on running wheel and afterward both, sedentary and exercised groups, received intracerebroventricular (icv) injection of saline or insulin (0.5-5 mU). Memory performance was assessed using the inhibitory avoidance and water maze tasks. Hippocampal tissue was measured for [U-(14)C] glucose oxidation and the immunocontent of insulin receptor/signaling (IR, pTyr, pAktser473). Additionally, the phosphorylation of the glutamate NMDA receptor NR2B subunit and the capacity of glutamate uptake were measured, and immunohistochemistry was used to determine glial reactivity. Exercise significantly increased insulin peripheral sensitivity, spatial learning, and hippocampal IR/pTyrIR/pAktser473 immunocontent. Glucose oxidation, glutamate uptake, and astrocyte number also increased relative to the sedentary group. In both memory tasks, 5 mU icv insulin produced amnesia but only in exercised animals. This amnesia was associated a rapid (15 min) and persistent (24 h) increase in hippocampal pNR2B immunocontent that paralleled the increase in glial reactivity. In conclusion, physical exercise thus increased hippocampal insulin signaling and improved water maze performance. Overstimulation of insulin signaling in exercised animals, however, via icv administration impaired behavioral performance. This effect was likely the result of aberrant phosphorylation of the NR2B subunit.


Assuntos
Hipocampo , Insulina/administração & dosagem , Condicionamento Físico Animal/fisiologia , Receptor de Insulina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Amnésia/fisiopatologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Cognição/fisiologia , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Imuno-Histoquímica , Injeções Intraventriculares , Resistência à Insulina/fisiologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos , Neuroglia/metabolismo , Fosforilação , Transdução de Sinais/fisiologia
6.
Behav Pharmacol ; 21(7): 668-75, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20729714

RESUMO

Olanzapine and highly palatable diets can alter metabolism and brain function. We investigated the interaction of chronic treatment (4 months) with olanzapine and a cafeteria diet on metabolic parameters, memory tasks (spatial and aversive), the elevated plus maze and locomotor activity induced by d-amphetamine. Male Wistar rats were separated into the following groups: standard diet vehicle, standard diet and olanzapine, cafeteria diet vehicle and cafeteria diet and olanzapine. Olanzapine was administered in the drinking water (approximately 1.5 mg/kg/day), and after 3 days of treatment, the rats exhibited an expected anxiolytic effect and reduced amphetamine-induced hyperlocomotion. After 4 months of treatment, cafeteria diet vehicle and cafeteria diet olanzapine rats exhibited an increased body weight and heavier fat pads compared with the standard diet groups. Olanzapine increased only the epididymal and mesenteric fat pads. The cafeteria diet and olanzapine group showed greater glucose intolerance compared with all other groups. The cafeteria diet altered the effects of chronic olanzapine on the performance in the water maze and inhibitory avoidance tasks. Chronic olanzapine treatment failed to affect amphetamine-induced locomotion and to produce anxiolytic effects in the elevated plus maze task, regardless of the diet. Our results suggest that chronic olanzapine caused an increase in fat pads, which is putatively involved in the etiology of many metabolic diseases. Rats on the cafeteria diet were overweight and exhibited glucose intolerance. We did not observe these effects with olanzapine treatment with the standard diet. Moreover, the chronic treatment regimen caused tolerance to the antipsychotic and anxiolytic effects of olanzapine and seemed to potentiate some of the metabolic effects of the cafeteria diet. The cafeteria diet also modified the effects of chronic treatment with olanzapine on cognitive tasks, which may represent an undesirable effect of poor diets in psychiatric patients.


Assuntos
Comportamento Animal , Benzodiazepinas , Fast Foods , Intolerância à Glucose , Obesidade , Anfetamina/farmacologia , Animais , Antipsicóticos/administração & dosagem , Antipsicóticos/efeitos adversos , Comportamento Animal/efeitos dos fármacos , Benzodiazepinas/administração & dosagem , Benzodiazepinas/efeitos adversos , Dieta/psicologia , Gorduras na Dieta/efeitos adversos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/psicologia , Fast Foods/efeitos adversos , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Humanos , Masculino , Aprendizagem em Labirinto , Atividade Motora/efeitos dos fármacos , Obesidade/etiologia , Obesidade/metabolismo , Olanzapina , Ratos , Ratos Wistar
7.
Metab Brain Dis ; 25(2): 211-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20443057

RESUMO

The ketogenic diet (KD) is a high-fat and low-carbohydrate diet, used for treating refractory epilepsy in children. We have previously shown alterations in nucleotidase activities from the central nervous system and blood serum of rats submitted to different models of epilepsy. In this study we investigated the effect of KD on nucleotidase activities in the blood serum, as well if KD has any influence in the activity of liver enzymes such as alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase activities in Wistar rats submitted to the lithium-pilocarpine model of epilepsy. At 21 days of age, rats received an injection of lithium chloride and, 18-19 h later, they received an injection of pilocarpine hydrochloride for status epilepticus induction. The results reported herein show that seizures induced by lithium-pilocarpine elicit a significant increase in ATP hydrolysis and alkaline phosphatase activity, as well as a decrease in ADP hydrolysis and aspartate aminotransferase activity. The KD is a rigorous regimen that can be associated with hepatic damage, as shown herein by the elevated activities of liver enzymes and 5'-nucleotidase in blood serum. Further studies are necessary to investigate the mechanism of inhibition of lithium on nucleotidases in blood serum.


Assuntos
Dieta Cetogênica , Enzimas/sangue , Lítio/administração & dosagem , Fígado/enzimologia , Nucleotídeos/metabolismo , Pilocarpina/administração & dosagem , Estado Epiléptico/sangue , Estado Epiléptico/dietoterapia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Convulsivantes/administração & dosagem , Modelos Animais de Doenças , Feminino , Hidrólise/efeitos dos fármacos , Ratos , Ratos Wistar , Estado Epiléptico/induzido quimicamente
8.
Neurochem Int ; 56(6-7): 753-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20172010

RESUMO

Essential omega-3 polyunsaturated fatty acids (omega3) are crucial to brain development and function, being relevant for behavioral performance. In the present study we examined the influence of dietary omega3 in the development of the glutamatergic system and on behavior parameters in rats. Female rats received isocaloric diets, either with omega3 (omega3 group) or a omega3 deficient diet (D group). In ontogeny experiments of their litters, hippocampal immunocontent of ionotropic NMDA and AMPA glutamatergic receptors subunits (NR2 A\B and GluR1, respectively) and the alpha isoform of the calcium-calmodulin protein kinase type II (alphaCaMKII) were evaluated. Additionally, hippocampal [(3)H]glutamate binding and uptake were assessed. Behavioral performance was evaluated when the litters were adult (60 days old), through the open-field, plus-maze, inhibitory avoidance and flinch-jump tasks. The D group showed decreased immunocontent of all proteins analyzed at 02 days of life (P2) in comparison with the omega3 group, although the difference disappeared at 21 days of life (except for alphaCaMKII, which content normalized at 60 days old). The same pattern was found for [(3)H]glutamate binding, whereas [(3)H]glutamate uptake was not affected. The D group also showed memory deficits in the inhibitory avoidance, increased in the exploratory pattern in open-field, and anxiety-like behavior in plus-maze. Taken together, our results suggest that dietary omega3 content is relevant for glutamatergic system development and for behavioral performance in adulthood. The putative correlation among the neurochemical and behavioral alterations caused by dietary omega3 deficiency is discussed.


Assuntos
Comportamento Animal/fisiologia , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Insaturados/deficiência , Ácido Glutâmico/fisiologia , Sinapses/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/análise , Ácidos Graxos Ômega-3/fisiologia , Feminino , Ácido Glutâmico/metabolismo , Hipocampo/química , Hipocampo/metabolismo , Lactação , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Wistar , Receptores de AMPA/análise , Receptores de N-Metil-D-Aspartato/análise , Sinaptossomos/química , Trítio
9.
J Nutr Biochem ; 21(4): 351-6, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19410444

RESUMO

The role of omega-3 polyunsaturated fatty acids (3PUFAs) on brain function is increasingly demonstrated. Here, the effect of dietary deprivation of essential 3PUFAs on some parameters related to neuroprotection was investigated. Rats were fed with two different diets: omega-3 diet and omega-3-deprived diet. To assess the influence of 3PUFAs on brain responses to ischemic insult, hippocampal slices were subjected to an oxygen and glucose deprivation (OGD) model of in vitro ischemia. The omega-3-deprived group showed higher cell damage and stronger decrease in the [(3)H]glutamate uptake after OGD. Moreover, omega-3 deprivation influenced antiapoptotic cell response after OGD, affecting GSK-3beta and ERK1/2, but not Akt, phosphorylation. Taken together, these results suggest that 3PUFAs are important for cell protection after ischemia and also seem to play an important role in the activation of antiapoptotic signaling pathways.


Assuntos
Morte Celular , Gorduras Insaturadas na Dieta/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Hipocampo/fisiopatologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Fármacos Neuroprotetores/administração & dosagem , Traumatismo por Reperfusão/prevenção & controle , Animais , Hipóxia Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ácidos Graxos Essenciais/deficiência , Ácidos Graxos Ômega-3/fisiologia , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Técnicas In Vitro , Masculino , Fosforilação , Processamento de Proteína Pós-Traducional , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
10.
Exp Biol Med (Maywood) ; 234(12): 1437-44, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19934364

RESUMO

Nutrition during pregnancy and lactation can program an offspring's metabolism with regard to glucose and lipid homeostasis. A suboptimal environment during fetal, neonatal and infant development is associated with impaired glucose tolerance, type 2 diabetes and insulin resistance in later adult life. However, studies on the effects of a low protein diet imposed from the beginning of gestation until adulthood are scarce. This study's objective was to investigate the effects of a low protein diet imposed from the gestational period until 4 months of age on the parameters of glucose tolerance and insulin responsiveness in Wistar rats. The rats were divided into a low protein diet group and a control group and received a diet with either 7% or 25% protein, respectively. After birth, the rats received the same diet as their mothers, until 4 months of age. In the low protein diet group it was observed that: (i) the hepatic glycogen concentration and hepatic glycogen synthesis from glycerol were significantly greater than in the control group; (ii) the disposal of 2-deoxyglucose in soleum skeletal muscle slices was 29.8% higher than in the control group; (iii) there was both a higher glucose tolerance in the glucose tolerance test; and (iv) a higher insulin responsiveness in than in the control group. The results suggest that the low protein diet animals show higher glucose tolerance and insulin responsiveness relative to normally nourished rats. These findings were supported by the higher hepatic glycogen synthesis and the higher disposal of 2-deoxyglucose in soleum skeletal muscle found in the low protein diet rats.


Assuntos
Envelhecimento/metabolismo , Resistência à Insulina , Complicações na Gravidez/metabolismo , Deficiência de Proteína/metabolismo , Animais , Desoxiglucose/metabolismo , Proteínas Alimentares , Feminino , Idade Gestacional , Teste de Tolerância a Glucose , Glicerol/metabolismo , Glicogênio/biossíntese , Lactação/metabolismo , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Gravidez , Ratos , Ratos Wistar
11.
Exp Biol Med (Maywood) ; 234(11): 1296-304, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19855071

RESUMO

Many studies have demonstrated that DNA damage may be associated with type 2 diabetes mellitus (T2DM) and its complications. The goal of this study was to evaluate the effects of the potential relationship between fat (thermolyzed) intake, glucose dyshomeostasis and DNA injury in rats. Biochemical parameters related to glucose metabolism (i.e., blood glucose levels, insulin tolerance tests, glucose tolerance tests and fat cell glucose oxidation) and general health parameters (i.e., body weight, retroperitoneal and epididymal adipose tissue) were evaluated in rats after a 12-month treatment with either a high fat or a high thermolyzed fat diet. The high fat diet (HFD) and high fat thermolyzed diet (HFTD) showed increased body weight and impaired insulin sensitivity at the studied time-points in insulin tolerance test (ITT) and glucose tolerance test (GTT). Interestingly, only animals subjected to the HFTD diet showed decreased epididymal fat cell glucose oxidation. We show which high fat diets have the capacity to reduce glycogen synthesis by direct and indirect pathways. HFTD promoted an increase in lipid peroxidation in the liver, demonstrating significant damage in lipids in relation to other groups. Blood and hippocampus DNA damage was significantly higher in animals subjected to HFDs, and the highest damage was observed in animals from the HFTD group. Striatum DNA damage was significantly higher in animals subjected to HFDs, compared with the control group. These results show a positive correlation between high fat diet, glucose dyshomeostasis, oxidative stress and DNA damage.


Assuntos
Dano ao DNA , Gorduras na Dieta/farmacologia , Resistência à Insulina , Temperatura , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Gorduras na Dieta/administração & dosagem , Glucose/metabolismo , Teste de Tolerância a Glucose , Glicogênio/biossíntese , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Oxirredução/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Ratos , Ratos Wistar
12.
Biochimie ; 91(8): 961-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19426780

RESUMO

In the present study we evaluated the effect of chronic methionine administration on oxidative stress and biochemical parameters in liver and serum of rats, respectively. We also performed histological analysis in liver. Results showed that hypermethioninemia increased chemiluminescence, carbonyl content and glutathione peroxidase activity, decreased total antioxidant potential, as well as altered catalase activity. Hypermethioninemia increased synthesis and concentration of glycogen, besides histological studies showed morphological alterations and reduction in the glycogen/glycoprotein content in liver. Serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and glucose were increased in hypermethioninemic rats. These findings suggest that oxidative damage and histological changes caused by methionine may be related to the hepatic injury observed in hypermethioninemia.


Assuntos
Fígado/efeitos dos fármacos , Fígado/patologia , Metionina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Glicemia/metabolismo , Glutationa/metabolismo , Glicogênio/biossíntese , Humanos , Fígado/enzimologia , Fígado/metabolismo , Luminescência , Metionina/administração & dosagem , Ratos , Ratos Wistar , Compostos de Sulfidrila/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
13.
Mol Nutr Food Res ; 52(11): 1365-71, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18655006

RESUMO

The ketogenic diet (KD), characterized by high fat and low carbohydrate and protein contents, has been proposed to be beneficial in children with epilepsy disorders not helped by conventional anti-epileptic drug treatment. Weight loss and inadequate growth is an important drawback of this diet and metabolic causes are not well characterized. The aim of this study was to examine body weight variation during KD feeding for 6 wk of Wistar rats; fat mass and adipocyte cytosolic phosphoenolpyruvate carboxykinase (PEPCK) activity were also observed. PEPCK activity was determined based on the [H(14)CO(3) (-)]-oxaloacetate exchange reaction. KD-fed rats gained weight at a less rapid rate than normal-fed rats, but with a significant increment in fat mass. The fat mass/body weight ratio already differed between ketogenic and control rats after the first week of treatment, and was 2.4 x higher in ketogenic rats. The visceral lipogenesis was supported by an increment in adipocyte PEPCK, aiming to provide glycerol 3-phosphate to triacylglycerol synthesis and this fat accumulation was accompanied by glucose intolerance. These data contribute to our understanding of the metabolic effects of the KD in adipose tissue and liver and suggest some potential risks of this diet, particularly visceral fat accumulation.


Assuntos
Tecido Adiposo/anatomia & histologia , Dieta Cetogênica/estatística & dados numéricos , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Redução de Peso/fisiologia , Tecido Adiposo/efeitos dos fármacos , Animais , Criança , Colesterol/sangue , Epilepsia/prevenção & controle , Humanos , Masculino , Ratos , Ratos Wistar , Triglicerídeos/sangue , Redução de Peso/efeitos dos fármacos
14.
Physiol Behav ; 94(4): 580-5, 2008 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-18485424

RESUMO

Perinatal undernutrition impairs maturational events in the development of the brain, resulting in a variety of brain dysfunctions, which affect cognitive functions. This study investigated the effects of pre- and post-natal undernutrition (diet: 8% protein; control group: 25% protein) on some glutamatergic and behavioral parameters of 21-day-old rats. In the cerebral cortex, undernutrition reduced the Na-independent [(3)H]Glutamate binding in cellular membranes and [(3)H]Glutamate vesicular uptake, without affecting the [(3)H]Glutamate uptake by slices preparation. Behavioral parameters were affected, showing a strong amnesic effect both in the short- and long-term memory of inhibitory avoidance tasks, and a significant reduction in the number of crossings in an open field. The effects of perinatal undernutrition in 21-day-old rats, which alter some glutamatergic parameters may be related to the impairment of memory in certain behavioral tasks.


Assuntos
Aprendizagem da Esquiva/fisiologia , Córtex Cerebral/metabolismo , Comportamento Exploratório/fisiologia , Ácido Glutâmico/metabolismo , Desnutrição/metabolismo , Fatores Etários , Animais , Córtex Cerebral/crescimento & desenvolvimento , Técnicas In Vitro , Masculino , Ratos , Ratos Wistar , Vesículas Sinápticas/metabolismo , Sinaptossomos/metabolismo
15.
Neurochem Res ; 33(1): 114-24, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17680360

RESUMO

In the present work we investigated the in vitro effect of the branched-chain amino acids (BCAA) accumulating in maple syrup urine disease (MSUD) on some parameters of energy metabolism in cerebral cortex of rats. 14CO2 production from [1-14C]acetate, [1-5-14C]citrate and [U-14C]glucose, as well as glucose uptake by the brain were evaluated by incubating cortical prisms from 30-day-old rats in the absence (controls) or presence of leucine (Leu), valine (Val) or isoleucine (Ile). All amino acids significantly reduced 14CO2 production by around 20-55%, in contrast to glucose utilization, which was significantly increased by up to 90%. Furthermore, Leu significantly inhibited the activity of the respiratory chain complex IV, whereas Val and Ile markedly inhibited complexes II-III, III and IV by up to 40%. We also observed that trolox (alpha-tocopherol) and creatine totally prevented the inhibitory effects provoked by the BCAA on the respiratory chain complex activities, suggesting that free radicals were involved in these effects. The results indicate that the major metabolites accumulating in MSUD disturb brain aerobic metabolism by compromising the citric acid cycle and the electron flow through the respiratory chain. We presume that these findings may be of relevance to the understanding of the pathophysiology of the neurological dysfunction of MSUD patients.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Encéfalo/metabolismo , Metabolismo Energético , Doença da Urina de Xarope de Bordo/metabolismo , Animais , Ciclo do Ácido Cítrico , Glucose/metabolismo , Ratos , Ratos Wistar
16.
Mol Cell Biochem ; 310(1-2): 153-8, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18066651

RESUMO

There is a current interest in dietary compounds, such as green tea polyphenols, that can favor protection against a variety of brain disorders, including Alzheimer's disease, ischemia, and stroke. The objective of the present study was to investigate the effects of (-)-epicatechin-3-gallate (ECG), one of three three major green tea antioxidants, on C6 lineage cells. Here, we evaluated cell morphology and integrity and specific astrocyte activities; glutamate uptake and secretion of S100B in the presence of 0.1, 1 and 10 microM ECG. During 6 h of incubation, cell morphology was altered only at 10 microM ECG; however, after 24 h of treatment, cells become stellate in the presence of all concentrations of ECG. Loss of cell integrity was observed after 24 h with 10 microM ECG and represented only 6% of cells, in contrast with 2% observed at basal conditions. ECG (1-10 microM) induced a decrease (about 36%) in glutamate uptake after 1 h of incubation. After 6 h, an opposite effect occurred and ECG induced a sustained increase in glutamate uptake of about 70% from 0.1 microM. In addition, a significant increase in S100B was observed at 1 microM ECG (36%) and 10 microM ECG (69%) after 1 h, in contrast to 6 h of treatment, where all doses of ECG induced a significant increase (about 60%) in S100B secretion. These data demonstrate that ECG induces a significant improvement in glutamate uptake and S100B secretion in C6 cells, indicating that ECG could contribute to the neuroprotective role of astroglial cells.


Assuntos
Catequina/análogos & derivados , Linhagem da Célula/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Proteínas S100/metabolismo , Animais , Catequina/farmacologia , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Ratos
17.
Neuromolecular Med ; 9(4): 324-30, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17999206

RESUMO

It is increasingly recognized that life-style factors, such as physical exercise or diet influence brain health. In the present work we analyzed the effect of a western-style diet ("cafeteria diet") on the entrance to the brain of circulating IGF-1, a neuroprotective agent that has been related to different neurodegenerative diseases. Rats under a cafeteria diet showed reduced passage of systemic IGF-1 across the choroid plexus, a main site of IGF-1 entrance into the brain through the cerebrospinal fluid. Furthermore, the IGF-1 receptor at the choroid plexus of rats fed with a cafeteria diet showed enhanced sensitivity toward IGF-1 while receptor levels remained unchanged. Examination of possible mechanisms underlying reduced entrance of systemic IGF-1 to the brain showed that triglycerides that increased in blood after a cafeteria diet, diminished the passage of IGF-1 across choroid plexus epithelia. This effect of triglycerides was achieved by altering the interaction of IGF-1 with megalin, a choroid plexus transporter involved in transcytosis of IGF-1 from the circulation into the brain. Reduced brain entrance of circulating IGF-1 elicited by a western-style diet suggests that the higher incidence of brain diseases related to inadequate diets is due in part to diminished neurotrophic support.


Assuntos
Barreira Hematoencefálica , Peso Corporal , Dieta/etnologia , Fator de Crescimento Insulin-Like I/farmacocinética , Restaurantes , Ração Animal , Animais , Lipídeos/sangue , Masculino , Modelos Animais , Ratos
18.
Exp Biol Med (Maywood) ; 232(8): 1021-6, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17720948

RESUMO

The aim of this study was to investigate the potential relationship between hypothyroidism and delta-aminolevulinate dehydratase (delta-ALA-D) activity in rat blood and liver. Experimental hypothyroidism was induced in weanling rats by exposing their mothers to propylthiouracil (PTU) diluted in tap water (0.05% w/ v), ad libitum, during the lactational period (PTU group). Control (euthyroid) group included weanling rats whose mothers received just tap water, ad libitum, during the lactational period. Reverted-hypothyroid group (PTU + 3,3',5-triiodo-L-thyronine [T(3)]) included weanling rats whose mothers were exposed to PTU similarly to those in the hypothyroid group, but pups received daily subcutaneous injections of T(3) (20 microg/kg, from Postnatal Days 2-20). After the treatment, serum T(3) levels were drastically decreased (around 70%) in the PTU group, and this phenomenon was almost reverted by exogenous T(3). PTU decreased blood delta-ALA-D activity by 75%, and T(3) treatment prevented such phenomena. Erythrocytes and hemoglobin levels were increased by 10% in PTU-treated animals and higher increments (around 25%) were observed in these parameters when exogenous T(3) was coadministered. Dithiothreitol did not change blood delta-ALA-D activity of PTU-exposed animals when present in the reaction medium, suggesting no involvement of the enzyme's essential thiol groups in PTU-induced delta-ALA-D inhibition. PTU did not affect blood delta-ALA-D activity in vitro. These results are the first to show a correlation between hypothyroidism and decreased delta-ALA-D activity and point to this enzyme as a potential molecule involved with hypothyroidism-related hematological changes.


Assuntos
Hipotireoidismo Congênito/enzimologia , Fígado/enzimologia , Sintase do Porfobilinogênio/sangue , Animais , Animais Recém-Nascidos , Antitireóideos/toxicidade , Hipotireoidismo Congênito/sangue , Hipotireoidismo Congênito/induzido quimicamente , Modelos Animais de Doenças , Ditiotreitol/farmacologia , Ativação Enzimática/efeitos dos fármacos , Eritrócitos/enzimologia , Feminino , Hemoglobinas/análise , Lactação/sangue , Masculino , Ratos , Ratos Wistar , Tiouracila/toxicidade , Tri-Iodotironina/farmacologia
19.
Int J Dev Neurosci ; 25(6): 391-8, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17643899

RESUMO

Glutaric acidemia type I is an inherited metabolic disorder caused by a severe deficiency of the mitochondrial glutaryl-CoA dehydrogenase activity leading to accumulation of predominantly glutaric and 3-hydroxyglutaric acids in the brain tissue of the affected patients. Considering that a toxic role was recently postulated for quinolinic acid in the neuropathology of glutaric acidemia type I, in the present work we investigated whether the combination of quinolinic acid with glutaric or 3-hydroxyglutaric acids or the mixture of glutaric plus 3-hydroxyglutaric acids could alter brain energy metabolism. The parameters evaluated in cerebral cortex from young rats were glucose utilization, lactate formation and (14)CO(2) production from labeled glucose and acetate, as well as the activities of pyruvate dehydrogenase and creatine kinase. We first observed that glutaric (5 mM), 3-hydroxyglutaric (1 mM) and quinolinic acids (0.1 microM) per se did not alter these parameters. Similarly, no change of these parameters occurred when combining glutaric with quinolinic acids or 3-hydroxyglutaric with quinolinic acids. In contrast, co-incubation of glutaric plus 3-hydroxyglutaric acids increased glucose utilization, decreased (14)CO(2) generation from glucose, inhibited pyruvate dehydrogenase activity as well as total and mitochondrial creatine kinase activities. The glutaric plus 3-hydroxyglutaric acids-induced inhibitory effects on creatine kinase were prevented by the antioxidants glutathione and catalase plus superoxide dismutase, indicating the participation of reactive oxygen species. Our data indicate a synergic action of glutaric and 3-hydroxyglutaric acids disturbing energy metabolism in cerebral cortex of young rats.


Assuntos
Química Encefálica/fisiologia , Encefalopatias Metabólicas/metabolismo , Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Glutaratos/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Química Encefálica/efeitos dos fármacos , Encefalopatias Metabólicas/fisiopatologia , Creatina Quinase/metabolismo , Sinergismo Farmacológico , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Glutaratos/toxicidade , Ácido Láctico/metabolismo , Deficiência Múltipla de Acil Coenzima A Desidrogenase/metabolismo , Deficiência Múltipla de Acil Coenzima A Desidrogenase/fisiopatologia , Técnicas de Cultura de Órgãos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Complexo Piruvato Desidrogenase/metabolismo , Ácido Quinolínico/metabolismo , Ácido Quinolínico/toxicidade , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
20.
Metab Brain Dis ; 22(2): 145-55, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17516157

RESUMO

In the present study we evaluated the in vivo effect of arginine on CO(2) production from glucose in a medium with physiological and high extracellular K(+) concentrations. We also tested the influence of the nitric oxide synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME), on the effects elicited by arginine in order to investigate the possible participation of NO and/or its derivatives on the effects of arginine on CO(2) production from glucose. Sixty-day-old rats were treated with a single intraperitoneal injection of saline (control; group I), arginine (0.8 g/kg; group II), L-NAME (2.0 mg/kg; group III) or arginine (0.8 g/kg) plus L-NAME (2.0 mg/kg; group IV) and were killed 1 h later. Results showed that arginine administration inhibited CO(2) production from glucose at physiological extracellular K(+) concentration and L-NAME prevented such effect. In contrast, arginine administration had no effect on CO(2) production from glucose at high extracellular K(+) concentration. Based on these data, we also investigated the in vitro effect of arginine on CO(2) production from glucose in a medium with physiological extracellular K(+) concentration in hippocampus slices. Results showed that arginine (0.1-1.5 mM) when added to the incubation medium did not alter CO(2) production from glucose in hippocampus slices of untreated rats. In addition, we also demonstrated that arginine inhibits Na(+), K(+)-ATPase activity. The data indicate that the reduction of CO(2) production by arginine was probably mediated by NO and/or its derivatives, which could act inhibiting the activity of Na(+), K(+)-ATPase. The results suggest that arginine impairs energy metabolism in hippocampus slices of rats.


Assuntos
Arginina/farmacologia , Encéfalo/metabolismo , Dióxido de Carbono/metabolismo , Glucose/metabolismo , Animais , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/fisiologia , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...