Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 21(1): 232, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034658

RESUMO

BACKGROUND: The Arabidopsis RUS (ROOT UV-B SENSITIVE) gene family contains six members, each of which encodes a protein containing a DUF647 (domain of unknown function 647) that is commonly found in eukaryotes. Previous studies have demonstrated that RUS1 and RUS2 play critical roles in early seedling development. All six RUS genes are expressed throughout the plant, but little is known about the functional roles of RUS3, RUS4, RUS5 and RUS6. RESULTS: We used a reverse-genetic approach to identify knockout mutants for RUS3, RUS4, RUS5 and RUS6. Each mutant was confirmed by direct DNA sequencing and genetic segregation analysis. No visible phenotypic differences were observed in rus3, rus4, or rus5 knockout mutants under standard growth conditions, but rus6 knockout mutants displayed a strong embryo-lethal phenotype. Two independent knockout lines for RUS6 were characterized. The rus6 mutations could only be maintained through a heterozygote, because rus6 homozygous mutants did not survive. Closer examinations of homozygous rus6 embryos from rus6/ + parent plants revealed that RUS6 is required for early embryo development. Loss of RUS6 resulted in embryo lethality, specifically at the mid-globular stage. The embryo-lethality phenotype was complemented by a RUS6::RUS6-GFP transgene, and GFP signal was detected throughout the embryo. Histological analyses with the ß-glucuronidase reporter gene driven by the RUS6 promoter showed tissue- and development-specific expression of RUS6, which was highest in floral tissues. CONCLUSION: Our data revealed that RUS6 is essential for early embryo development in Arabidopsis, and that the RUS gene family functions in multiple stages of plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Arabidopsis/embriologia , Proteínas de Arabidopsis/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Fenótipo , Regiões Promotoras Genéticas/genética
2.
Sci Transl Med ; 13(591)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910981

RESUMO

The first clinically approved engineered chimeric antigen receptor (CAR) T cell therapies are remarkably effective in a subset of hematological malignancies with few therapeutic options. Although these clinical successes have been exciting, CAR T cells have hit roadblocks in solid tumors that include the lack of highly tumor-specific antigens to target, opening up the possibility of life-threatening "on-target/off-tumor" toxicities, and problems with T cell entry into solid tumor and persistent activity in suppressive tumor microenvironments. Here, we improve the specificity and persistent antitumor activity of therapeutic T cells with synthetic Notch (synNotch) CAR circuits. We identify alkaline phosphatase placental-like 2 (ALPPL2) as a tumor-specific antigen expressed in a spectrum of solid tumors, including mesothelioma and ovarian cancer. ALPPL2 can act as a sole target for CAR therapy or be combined with tumor-associated antigens such as melanoma cell adhesion molecule (MCAM), mesothelin, or human epidermal growth factor receptor 2 (HER2) in synNotch CAR combinatorial antigen circuits. SynNotch CAR T cells display superior control of tumor burden when compared to T cells constitutively expressing a CAR targeting the same antigens in mouse models of human mesothelioma and ovarian cancer. This was achieved by preventing CAR-mediated tonic signaling through synNotch-controlled expression, allowing T cells to maintain a long-lived memory and non-exhausted phenotype. Collectively, we establish ALPPL2 as a clinically viable cell therapy target for multiple solid tumors and demonstrate the multifaceted therapeutic benefits of synNotch CAR T cells.


Assuntos
Receptores de Antígenos Quiméricos , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia Adotiva , Mesotelina , Camundongos , Placenta , Gravidez , Receptores de Antígenos de Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...