Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Psychophysiol ; 183: 92-102, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455720

RESUMO

Vigilance refers to the ability to maintain attention and to remain alert to stimuli in prolonged and monotonous tasks. Vigilance decrement describes the decline in performance in the course of such sustained attention tasks. Time-related alterations in attention have been found to be associated with changes in EEG. We investigated these time-on-task effects on the basis of changes in the conventional EEG spectral bands with the aim of finding a compound measure of vigilance. 148 healthy adults performed a cued Go/NoGo task that lasted approximately 21 min. Behavioural performance was examined by comparing the number of errors in the first and last quarters of the task using paired t-test. EEG data were epoched per trial, and time-on-task effects were modelled by using multiple linear regression, with frequency spectra band power values as independent variables and trial number as the dependent variable. Behavioural performance decreased in terms of omission errors only. Performance of the models, expressed by predicted R-squared, was between 0.10 and 0.27, depending on the particular task condition. The time-on-task EEG spectral changes were characterized by broad changes in the alpha and frontal changes in the beta and gamma bands. We were able to identify a set of EEG spectral features that predict time-on-task. Our output is considered to be a measure of vigilance, reflecting the allocation of mental resources for the maintenance of attention.


Assuntos
Atenção , Vigília , Adulto , Humanos , Tempo de Reação/fisiologia , Atenção/fisiologia , Sinais (Psicologia) , Eletroencefalografia
2.
World J Biol Psychiatry ; 21(3): 172-182, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30990349

RESUMO

Objectives: The electrophysiological characteristics of attention-deficit/hyperactivity disorder (ADHD) and recent machine-learning methods promise easy-to-use approaches that can complement existing diagnostic tools when sufficiently large samples are used. Neuroalgorithms are models of multidimensional brain networks by means of which ADHD patient data can be separated from healthy control data.Methods: Spontaneous electroencephalographic and event-related potential (ERP) data were collected three times over the course of 2 years from a multicentre sample of adults comprising 181 patients with ADHD and 147 healthy controls. Spectral power and ERP amplitude and latency measures were used as input data for a semi-automatic machine-learning framework.Results: ADHD patients and healthy controls could be classified with a sensitivity ranging from 75% to 83% and specificity values of 71% to 77%. In the analysis of the repeated measurements, sensitivity values of the selected logistic regression model remained high (72% and 76%), while specificity values slightly decreased over time (64% and 67%).Conclusions: Implementation of the system in clinical practice requires facilities to track affected networks, as well as expertise in neuropathophysiology. Therefore, the use of neuroalgorithms can enhance the diagnostic process by making it less subjective and more reliable and linking it to the underlying pathology.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Eletroencefalografia , Potenciais Evocados , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Biomarcadores , Humanos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA