Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(7): 077204, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32142323

RESUMO

We investigate the spin relaxation of Ho single atom magnets on MgO/Ag(100) as a function of temperature and magnetic field. We find that the spin relaxation is thermally activated at low field, while it remains larger than 1000 s up to 30 K and 8 T. This behavior contrasts with that of single molecule magnets and bulk paramagnetic impurities, which relax faster at high field. Combining our results with density functional theory, we rationalize this unconventional behavior by showing that local vibrations activate a two-phonon Raman process with a relaxation rate that peaks near zero field and is suppressed at high field. Our work shows the importance of these excitations in the relaxation of axially coordinated magnetic atoms.

2.
J Phys Condens Matter ; 30(46): 465502, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30359332

RESUMO

We present a joint experimental and theoretical study of the electronic properties of the rebonded-step reconstructed Ge/Si(1 0 5) surface which is the main strained face found on Ge/Si(0 0 1) quantum dots and is considered a prototypical model system for surface strain relaxation in heteroepitaxial growth. Using a vicinal surface as a model system for obtaining a stable single-domain film structure with large terraces and rebonded-step surface termination, we realized an extended and ordered Ge/Si planar hetero-junction suitable for direct study with angle-resolved photoemission spectroscopy. At the coverage of four Ge monolayers photoemission spectroscopy reveals the presence of 2D surface and film bands displaying energy-momentum dispersion compatible with the 5 × 4 periodicity of the system. The good agreement between experiment and first-principles electronic structure calculations confirms the validity of the rebonded-step structural model. The direct observation of surface features within 1 eV below the valence band maximum corroborates previously reported analysis of the electronic and optical behavior of the Ge/Si hetero-interface.

3.
J Phys Condens Matter ; 29(38): 384002, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28678017

RESUMO

Ultrafast spin currents induced by femtosecond laser excitation of ferromagnetic metals have been found to contribute to sub-picosecond demagnetization, and to cause a transient enhancement of the magnetization of the bottom Fe layer in a Ni/Ru/Fe layered structure. We analyze the ultrafast magnetization dynamics in such layered structures by element- and femtosecond time-resolved x-ray magnetic circular dichroism, for different Ni and Fe layer thicknesses, Ru and Ta interlayers, and by varying the pump laser fluence. While we do not observe the transient enhancement of the magnetization in Ni/Ru/Fe discovered previously, we do find a reduced demagnetization of the Fe layer compared to a Ni/Ta/Fe layered structure. In the latter, the spin-scattering Ta layer suppresses spin currents from the Ni layer into Fe, consistent with previous results. Any spin current arriving in the lower Fe layer will counteract other, local demagnetization mechanisms such as phonon-mediated spin-flip scattering. We find by increasing the Ni and Fe layer thicknesses in Ni/Ru/Fe a decreasing effect of spin currents on the buried Fe layer, consistent with a mean free path of the laser-induced spin currents of just a few nm. Our results suggest that in order to utilize ultrafast spin currents in an efficient manner, the sample design has to be optimized with these considerations in mind, and further studies clarifying the role of interfaces in the employed layered structures are needed.

4.
Science ; 352(6283): 318-21, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27081065

RESUMO

A permanent magnet retains a substantial fraction of its saturation magnetization in the absence of an external magnetic field. Realizing magnetic remanence in a single atom allows for storing and processing information in the smallest unit of matter. We show that individual holmium (Ho) atoms adsorbed on ultrathin MgO(100) layers on Ag(100) exhibit magnetic remanence up to a temperature of 30 kelvin and a relaxation time of 1500 seconds at 10 kelvin. This extraordinary stability is achieved by the realization of a symmetry-protected magnetic ground state and by decoupling the Ho spin from the underlying metal by a tunnel barrier.

5.
J Phys Condens Matter ; 27(43): 435001, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26416776

RESUMO

We investigate the surface structure of Ge(0 0 1) during the (2 × 1)-(1 × 1) phase transition occurring at T > 1130 K by high-resolution scanning tunnelling microscopy. We find a drastic size reduction of dimerized domains in line with substantial dimer breakup accompanied by surface roughening. Completing the picture provided by previous spectroscopic observations, probing with high spatial resolution reveals the nucleation of several nanodomains with distinct vicinal orientations and reconstructions. The structural transformation is irreversible and is not observed for other singular faces of Ge.

6.
J Phys Condens Matter ; 27(25): 253001, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26021279

RESUMO

Starting with the basic definition, a short description of a few relevant physical quantities playing a role in the growth process of heteroepitaxial strained systems, is provided. As such, the paper is not meant to be a comprehensive survey but to present a connection between the Stranski-Krastanov mechanism of nanostructure formation and the basic principles of nucleation and growth. The elastic field is described in the context of continuum elasticity theory, using either analytical models or numerical simulations. The results are compared with selected experimental results obtained on GeSi nanostructures. In particular, by tuning the value of quantities such as vicinality, substrate orientation and symmetry of the diffusion field, we elucidate how anisotropic elastic interactions determine shape, size, lateral distribution and composition of quantum dots.

7.
J Phys Condens Matter ; 25(39): 395801, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-23999271

RESUMO

We investigate the interdependent processes of strain and diffusion in the formation of holes and atolls obtained by rapid annealing of Ge/Si(111) islands at T ≈ 970 °C. We show that the shape evolution from islands to atolls and holes is closely captured by an analytical model including strain-driven diffusion. In the model, strain profiles obtained by finite element solutions of continuum elasticity equations are introduced in the diffusion equation as the source of a diffusion flux driven by the strain gradient. When the shape of the elastic field in Ge/Si(111) islands is coupled to diffusion, the morphology of the SiGe nanostructures observed after annealing is reproduced.

8.
J Phys Condens Matter ; 25(7): 075802, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23327904

RESUMO

By exploiting a fully three-dimensional finite-element modeling of strain fields, we investigate the spatial dependence of the elastic interaction energy between misfitting nanostructures beyond the point-dipole approximation. When interacting islands are finite in size, the detailed shape of the elastic strain field around and under the islands may convert the repulsive interactions, usually experienced between equal-sized islands, into an attractive basin between a large island and a population of neighboring clusters smaller than a critical size. The results of the simulations applied to large Ge islands grown on a Si(111) substrate have significant implications for the understanding of the strain-mediated coarsening of quantum dots around the islands.


Assuntos
Germânio/química , Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Silício/química , Simulação por Computador , Cristalização/métodos , Módulo de Elasticidade , Transferência de Energia , Conformação Molecular
9.
J Phys Condens Matter ; 24(35): 355002, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22854199

RESUMO

The distribution of points on a 2D domain influences the kinetics of its coverage when a growth law is attached at each point. This implies that the kinetics of space filling can be adopted as a descriptor of the degree of order of the initial point distribution. In this paper, the degree of order of an initial array of points has been changed following two paths: (i) from a regular square lattice, through increasing displacement assigned to each point, towards Poissonian disorder; (ii) from a Poissonian distribution, by introducing a hard core potential with increasing correlation lengths, towards a more ordered lattice. A linear growth law has been attached to the points of the initial array and the kinetics X(X(e)), where X(e) is the extended coverage as defined in the Kolmogorov-Johnson-Mehl-Avrami model, has been monitored. The quantitative analysis has been performed by fitting the kinetics to an equation which we propose for the first time and which has proved to be, in fact, highly suitable for the purpose. The results demonstrate that the gross of variation from order to disorder is obtained for point displacements, u, of the order of a, the latter being the constant of a square lattice. Vice versa, the introduction of a correlation distance in a random distribution provokes at most an order limited to the first neighbors and no real order can ever be reached. Others descriptors have been investigated, all confirming our results. We also developed an analytical description based on the use of the f-functions, as have been defined by Van Kampen, up to the second order terms. Such a description has been shown to work well for u/a < 1 within an interval ΔX(e) which depends on the ϵ value.

10.
Phys Rev Lett ; 106(5): 055503, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21405409

RESUMO

We present a novel approach to engineer the growth of strained epitaxial films based on tailoring the elastic-interaction potential between nanostructures with substrate vicinality. By modeling the island-island interaction energy surface within continuum elasticity theory, we find that its fourfold symmetry is broken at high miscuts, producing directions of reduced elastic-interaction energy. As a consequence, it is possible to direct the Ge island growth on highly misoriented Si(001) substrates towards desired pathways.

11.
J Nanosci Nanotechnol ; 11(10): 9185-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22400321

RESUMO

A complete description of Ge growth on vicinal Si(001) surfaces is provided. The distinctive mechanisms of the epitaxial growth process on vicinal surfaces are clarified from the very early stages of Ge deposition to the nucleation of 3D islands. By interpolating high-resolution scanning tunneling microscopy measurements with continuum elasticity modeling, we assess the dependence of island's shape and elastic interaction on the substrate misorientation. Our results confirm that vicinal surfaces offer an additional degree of control over the shape and symmetry of self-assembled nanostructures.

12.
Phys Rev Lett ; 104(3): 036104, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20366663

RESUMO

A complete description of Ge growth on vicinal Si(001) surfaces in the angular miscut range 0 degrees -8 degrees is presented. The key role of substrate vicinality is clarified from the very early stages of Ge deposition up to the nucleation of 3D islands. By a systematic scanning tunneling microscopy investigation we are able to explain the competition between step-flow growth and 2D nucleation and the progressive elongation of the 3D islands along the miscut direction [110]. Using finite element calculations, we find a strict correlation between the morphological evolution and the energetic factors which govern the {105} faceting at atomic scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...