Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Ecol ; 38(10): 1225-34, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23143636

RESUMO

We have addressed the impact of moose (Alces alces L.) on accumulation of secondary metabolites, lignin, and nitrogen in bilberry (Vaccinium myrtillus L.) along gradients of habitat productivity and solar radiation. The study was conducted within a long-term research project on direct and indirect impacts of moose on the ecosystem. In the experiment, browsing, defecation, and urination corresponding to four different moose densities were simulated for eight years before bilberry tissue was collected and analyzed. Some quantitatively dominant flavonoids were affected by the simulated moose browsing and by habitat productivity and light. The content of flavonoids increased with increasing moose density and light, and decreased with increasing habitat productivity. The higher concentration of secondary metabolites in bilberry from nutrient-poor sites may have resulted from the increased photosynthesis relative to growth, which facilitated secondary metabolism. The higher concentration of secondary metabolites in plants subjected to simulated moose- herbivory might have been caused in part by loss of biomass. In addition, in areas with high biomass loss, i.e., high moose density, a more open canopy was created and more solar radiation could have induced secondary metabolism.


Assuntos
Cervos/fisiologia , Ecossistema , Herbivoria , Vaccinium myrtillus/metabolismo , Análise de Variância , Animais , Comportamento Alimentar , Folhas de Planta/metabolismo , Brotos de Planta/metabolismo , Densidade Demográfica , Análise de Componente Principal , Luz Solar , Suécia
2.
Integr Zool ; 6(4): 341-51, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22182326

RESUMO

Browsing by large herbivores might either increase or decrease preference for the plant by other herbivores, depending on the plant response. Using a cafeteria test, we studied the preference by root voles (Microtus oeconomus [Pallas, 1776]) for bilberry (Vaccinium myrtillus L.) previously subjected to 4 levels of simulated moose (Alces alces [Linnaeus, 1758]) density. The different levels of moose density were simulated at population densities relevant for Fennoscandian conditions, in exclosures situated along a site productivity gradient. We expected: (i) voles to prefer bilberry from high productivity sites over low productivity sites; (ii) voles to prefer browsed bilberry, if plants allocate resources to compensatory growth or to avoid browsed bilberry if plants allocate resources to defense; (iii) these effects to increase with increasing simulated moose density; and (iv) the concentration of plant chemicals and the plant morphology to explain vole preference. Specifically, we predicted that voles would prefer: (i) plants with high nitrogen content; (ii) plants with low content of defensive substances; and (iii) tall plants with long shoots. Voles preferred bilberry from the high productivity sites compared to the low productivity sites. We also found an interaction between site productivity and simulated moose density, where voles preferred unbrowsed plants at low productivity sites and intermediate levels of browsing at high productivity sites. There was no effect of plant chemistry or morphology on vole preference. We conclude that moose browsing impacts the food preference of voles. With the current high densities of moose in Fennoscandia, this could potentially influence vole food selection and population dynamics over large geographical areas.


Assuntos
Arvicolinae/fisiologia , Cervos/fisiologia , Preferências Alimentares/fisiologia , Herbivoria/fisiologia , Vaccinium myrtillus/química , Análise de Variância , Animais , Finlândia , Dinâmica Populacional
3.
Ecology ; 90(10): 2724-33, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19886482

RESUMO

Large herbivores can affect the carbon cycle in boreal forests by changing productivity and plant species composition, which in turn could ultimately alter litter production, nutrient cycling, and the partitioning between aboveground and belowground allocation of carbon. Here we experimentally tested how moose (Alces alces) at different simulated population densities affected belowground respiration rates (estimated as CO2 flux) in young boreal forest stands situated along a site productivity gradient. At high simulated population density, moose browsing considerably depressed belowground respiration rates (24-56% below that of no-moose controls) except during June, where the difference only was 10%. Moose browsing depressed belowground respiration the most on low-productivity sites. Soil moisture and temperature did not affect respiration rates. Impact of moose on belowground respiration was closely linked to litter production and followed Michaelis-Menten dynamics. The main mechanism by which moose decrease belowground respiration rates is likely their effect on photosynthetic biomass (especially decreased productivity of deciduous trees) and total litter production. An increased productivity of deciduous trees along the site productivity gradient causes an unequal effect of moose along the same gradient. The rapid growth of deciduous trees may offer higher resilience against negative effects of moose browsing on litter production and photosynthate allocation to roots.


Assuntos
Cervos/fisiologia , Ecossistema , Consumo de Oxigênio , Animais , Dióxido de Carbono , Densidade Demográfica , Solo , Fatores de Tempo , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...