Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6688): 1210-1215, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484064

RESUMO

MXenes are a family of two-dimensional (2D) materials typically formed by etching the A element from a parent MAX phase. Computational screening for other 3D precursors suitable for such exfoliation is challenging because of the intricate chemical processes involved. We present a theoretical approach for predicting 2D materials formed through chemical exfoliation under acidic conditions by identifying 3D materials amenable for selective etching. From a dataset of 66,643 3D materials, we identified 119 potentially exfoliable candidates, within several materials families. To corroborate the method, we chose a material distinctly different from MAX phases, in terms of structure and chemical composition, for experimental verification. We selectively etched Y from YRu2Si2, resulting in 2D Ru2SixOy. The high-throughput methodology suggests a vast chemical space of 2D materials from chemical exfoliation.

2.
Nanotechnology ; 35(25)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38484394

RESUMO

We have investigated the optical properties of heterostructured InGaN platelets aiming at red emission, intended for use as nano-scaled light-emitting diodes. The focus is on the presence of non-radiative emission in the form of dark line defects. We have performed the study using hyperspectral cathodoluminescence imaging. The platelets were grown on a template consisting of InGaN pyramids, flattened by chemical mechanical polishing. These templates are defect free, whereas the dark line defects are introduced in the lower barrier and tend to propagate through all the subsequent layers, as revealed by the imaging of different layers in the structure. We conclude that the dark line defects are caused by stacking mismatch boundaries introduced by multiple seeding and step bunching at the edges of the as-polished, dome shaped templates. To avoid these defects, we suggest that the starting material must be flat rather than dome shaped.

3.
Small Methods ; 8(1): e2300776, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37806774

RESUMO

MXenes are electrically conductive 2D transition metal carbides/nitrides obtained by the etching of nanolaminated MAX phase compounds, followed by exfoliation to single- or few-layered nanosheets. The mainstream chemical etching processes have evolved from pure hydrofluoric acid (HF) etching into the innovative "minimally intensive layer delamination" (MILD) route. Despite their current popularity and remarkable application potential, the scalability of MILD-produced MXenes remains unproven, excluding MXenes from industrial applications. This work proposes a "next-generation MILD" (NGMILD) synthesis protocol for phase-pure, colloidally stable MXenes that withstand long periods of dry storage. NGMILD incorporates the synergistic effects of a secondary salt, a richer lithium (Li) environment, and iterative alcohol-based washing to achieve high-purity MXenes, while improving etching efficiency, intercalation, and shelf life. Moreover, NGMILD comprises a sulfuric acid (H2 SO4 ) post-treatment for the selective removal of the Li3 AlF6 impurity that commonly persists in MILD-produced MXenes. This work demonstrates the upscaled NGMILD synthesis of (50 g) phase-pure Ti3 C2 Tz MXene clays with high extraction yields (>22%) of supernatant dispersions. Finally, NGMILD-produced MXene clays dry-stored for six months under ambient conditions experience minimal degradation, while retaining excellent redispersibility. Overall, the NGMILD protocol is a leap forward toward the industrial production of MXenes and their subsequent market deployment.

4.
Inorg Chem ; 62(14): 5341-5347, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36988625

RESUMO

We report the synthesis of three out-of-plane chemically ordered quaternary transition metal borides (o-MAB phases) of the chemical formula M4CrSiB2 (M = Mo, W, Nb). The addition of these phases to the recently discovered o-MAB phase Ti4MoSiB2 shows that this is indeed a new family of chemically ordered atomic laminates. Furthermore, our results expand the attainable chemistry of the traditional M5SiB2 MAB phases to also include Cr. The crystal structure and chemical ordering of the produced materials were investigated using high-resolution scanning transmission electron microscopy and X-ray diffraction by applying Rietveld refinement. Additionally, calculations based on density functional theory were performed to investigate the Cr preference for occupying the minority 4c Wyckoff site, thereby inducing chemical order.

5.
Science ; 379(6637): 1130-1135, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36927013

RESUMO

Intercalated layered materials offer distinctive properties and serve as precursors for important two-dimensional (2D) materials. However, intercalation of non-van der Waals structures, which can expand the family of 2D materials, is difficult. We report a structural editing protocol for layered carbides (MAX phases) and their 2D derivatives (MXenes). Gap-opening and species-intercalating stages were respectively mediated by chemical scissors and intercalants, which created a large family of MAX phases with unconventional elements and structures, as well as MXenes with versatile terminals. The removal of terminals in MXenes with metal scissors and then the stitching of 2D carbide nanosheets with atom intercalation leads to the reconstruction of MAX phases and a family of metal-intercalated 2D carbides, both of which may drive advances in fields ranging from energy to printed electronics.

6.
J Phys Chem Lett ; 14(2): 481-488, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36625782

RESUMO

The development of abundant, cheap, and highly active catalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is important for hydrogen production. Nanolaminate ternary transition metal carbides (MAX phases) and their derived two-dimensional transition metal carbides (MXenes) have attracted considerable interest for electrocatalyst applications. Herein, four new MAX@MXene core-shell structures (Ta2CoC@Ta2CTx, Ta2NiC@Ta2CTx, Nb2CoC@Nb2CTx, and Nb2NiC@Nb2CTx), in which the core region is Co/Ni-MAX phases while the edge region is MXenes, have been prepared. Under alkaline electrolyte conditions, the Ta2CoC@Ta2CTx core-shell structure showed an overpotential of 239 mV and excellent stability during the HER with MXenes as the active sites. For the OER, the Ta2CoC@Ta2CTx core-shell structure showed an overpotential of 373 mV and a small Tafel plot (56 mV dec-1), which maintained a bulk crystalline structure and generated Co-based oxyhydroxides that formed by surface reconstruction as active sites. Considering rich chemical compositions and structures of MAX phases, this work provides a new strategy for designing multifunctional electrocatalysts and also paves the way for further development of MAX phase-based materials for clean energy applications.

7.
Nanoscale Adv ; 4(22): 4886-4894, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36381504

RESUMO

Photoconduction (PC) properties were investigated for ternary indium aluminium nitride (In x Al1-x N) nanorods (NRs) with different indium compositions (x) from 0.35 to 0.68, as grown by direct-current reactive magnetron sputter epitaxy. Cross-sectional scanning transmission electron microscopy (STEM) reveals single-crystal quality of the vertically aligned In x Al1-x N NRs. Single-rod photodetector devices with good ohmic contacts were fabricated using the focused-ion-beam technique (FIB), where the In-rich In0.68Al0.32N NR exhibits an optimal photocurrent responsivity of 1400 A W-1 and photoconductive gain of 3300. A transition from a positive photoresponse to a negative photoresponse was observed, while increasing the In composition x from 0.35 to 0.57. The negative PC was further enhanced by increasing x to 0.68. A model based on the coexistence and competition of deep electron trap states and recombination centers was proposed to explain the interesting composition-dependent PC in these ternary III-nitride 1D nanostructures.

8.
Sci Rep ; 12(1): 17987, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289429

RESUMO

Structural defects in Mg-doped GaN were analyzed using high-resolution scanning transmission electron microscopy combined with electron energy loss spectroscopy. The defects, in the shape of inverted pyramids, appear at high concentrations of incorporated Mg, which also lead to a reduction in free-hole concentration in Mg doped GaN. Detailed analysis pinpoints the arrangement of atoms in and around the defects and verify the presence of a well-defined layer of Mg at all facets, including the inclined facets. Our observations have resulted in a model of the pyramid-shaped defect, including structural displacements and compositional replacements, which is verified by image simulations. Finally, the total concentration of Mg atoms bound to these defects were evaluated, enabling a correlation between inactive and defect-bound dopants.

9.
Adv Sci (Weinh) ; 9(25): e2202594, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35851767

RESUMO

Solid-state precipitation can be used to tailor material properties, ranging from ferromagnets and catalysts to mechanical strengthening and energy storage. Thermoelectric properties can be modified by precipitation to enhance phonon scattering while retaining charge-carrier transmission. Here, unconventional Janus-type nanoprecipitates are uncovered in Mg3 Sb1.5 Bi0.5 formed by side-by-side Bi- and Ge-rich appendages, in contrast to separate nanoprecipitate formation. These Janus nanoprecipitates result from local comelting of Bi and Ge during sintering, enabling an amorphous-like lattice thermal conductivity. A precipitate size effect on phonon scattering is observed due to the balance between alloy-disorder and nanoprecipitate scattering. The thermoelectric figure-of-merit ZT reaches 0.6 near room temperature and 1.6 at 773 K. The Janus nanoprecipitation can be introduced into other materials and may act as a general property-tailoring mechanism.

10.
ACS Omega ; 7(24): 21337-21345, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35755371

RESUMO

Gadolinium chelates are employed worldwide today as clinical contrast agents for magnetic resonance imaging. Until now, the commonly used linear contrast agents based on the rare-earth element gadolinium have been considered safe and well-tolerated. Recently, concerns regarding this type of contrast agent have been reported, which is why there is an urgent need to develop the next generation of stable contrast agents with enhanced spin-lattice relaxation, as measured by improved T 1 relaxivity at lower doses. Here, we show that by the integration of gadolinium ions in cerium oxide nanoparticles, a stable crystalline 5 nm sized nanoparticulate system with a homogeneous gadolinium ion distribution is obtained. These cerium oxide nanoparticles with entrapped gadolinium deliver strong T 1 relaxivity per gadolinium ion (T 1 relaxivity, r 1 = 12.0 mM-1 s-1) with the potential to act as scavengers of reactive oxygen species (ROS). The presence of Ce3+ sites and oxygen vacancies at the surface plays a critical role in providing the antioxidant properties. The characterization of radial distribution of Ce3+ and Ce4+ oxidation states indicated a higher concentration of Ce3+ at the nanoparticle surfaces. Additionally, we investigated the ROS-scavenging capabilities of pure gadolinium-containing cerium oxide nanoparticles by bioluminescent imaging in vivo, where inhibitory effects on ROS activity are shown.

11.
Adv Mater ; 34(26): e2200574, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35419882

RESUMO

Here, a new family of 2D transition metal carbo-chalcogenides (TMCCs) is reported, which can be considered a combination of two well-known families, TM carbides (MXenes) and TM dichalcogenides (TMDCs), at the atomic level. Single sheets are successfully obtained from multilayered Nb2 S2 C and Ta2 S2 C using electrochemical lithiation followed by sonication in water. The parent multilayered TMCCs are synthesized using a simple, scalable solid-state synthesis followed by a topochemical reaction. Superconductivity transition is observed at 7.55 K for Nb2 S2 C. The delaminated Nb2 S2 C outperforms both multilayered Nb2 S2 C and delaminated NbS2 as an electrode material for Li-ion batteries. Ab initio calculations predict the elastic constant of TMCC to be over 50% higher than that of TMDC.

12.
Adv Mater ; 33(38): e2008361, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34350624

RESUMO

Exploratory theoretical predictions in uncharted structural and compositional space are integral to materials discoveries. Inspired by M5 SiB2 (T2) phases, the finding of a family of laminated quaternary metal borides, M'4 M″SiB2 , with out-of-plane chemical order is reported here. 11 chemically ordered phases as well as 40 solid solutions, introducing four elements previously not observed in these borides are predicted. The predictions are experimentally verified for Ti4 MoSiB2 , establishing Ti as part of the T2 boride compositional space. Chemical exfoliation of Ti4 MoSiB2 and select removal of Si and MoB2 sub-layers is validated by derivation of a 2D material, TiOx Cly , of high yield and in the form of delaminated sheets. These sheets have an experimentally determined direct band gap of ≈4.1 eV, and display characteristics suitable for supercapacitor applications. The results take the concept of chemical exfoliation beyond currently available 2D materials, and expands the envelope of 3D and 2D candidates, and their applications.

13.
Science ; 373(6556): 801-805, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34385398

RESUMO

Extensive research has been invested in two-dimensional (2D) materials, typically synthesized by exfoliation of van der Waals solids. One exception is MXenes, derived from the etching of constituent layers in transition metal carbides and nitrides. We report the experimental realization of boridene in the form of single-layer 2D molybdenum boride sheets with ordered metal vacancies, Mo4/3B2-xTz (where Tz is fluorine, oxygen, or hydroxide surface terminations), produced by selective etching of aluminum and yttrium or scandium atoms from 3D in-plane chemically ordered (Mo2/3Y1/3)2AlB2 and (Mo2/3Sc1/3)2AlB2 in aqueous hydrofluoric acid. The discovery of a 2D transition metal boride suggests a wealth of future 2D materials that can be obtained through the chemical exfoliation of laminated compounds.

14.
Nanomicro Lett ; 13(1): 158, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34292406

RESUMO

MAX phases are gaining attention as precursors of two-dimensional MXenes that are intensively pursued in applications for electrochemical energy storage. Here, we report the preparation of V2SnC MAX phase by the molten salt method. V2SnC is investigated as a lithium storage anode, showing a high gravimetric capacity of 490 mAh g-1 and volumetric capacity of 570 mAh cm-3 as well as superior rate performance of 95 mAh g-1 (110 mAh cm-3) at 50 C, surpassing the ever-reported performance of MAX phase anodes. Supported by operando X-ray diffraction and density functional theory, a charge storage mechanism with dual redox reaction is proposed with a Sn-Li (de)alloying reaction that occurs at the edge sites of V2SnC particles where Sn atoms are exposed to the electrolyte followed by a redox reaction that occurs at V2C layers with Li. This study offers promise of using MAX phases with M-site and A-site elements that are redox active as high-rate lithium storage materials.

15.
Materials (Basel) ; 14(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916188

RESUMO

Several ternary phases are known in the Mo-Fe-B system. Previous ab initio calculations have predicted that they should exhibit a tempting mix of mechanical and magnetic properties. In this study, we have deposited Mo-Fe-B films with a Fe-content varying from 0-37 at.% using non-reactive DC (direct current) magnetron sputtering. The phase composition, microstructure, and mechanical properties were investigated using X-ray diffraction, scanning transmission electron microscopy, and nanoindentation measurements. Films deposited at 300 °C and with >7 at.% Fe are nanocomposites consisting of two amorphous phases: a metal-rich phase and a metal-deficient phase. Hardness and elastic modulus were reduced with increasing Fe-content from ~29 to ~19 GPa and ~526 to ~353 GPa, respectively. These values result in H3/E2 ratios of 0.089-0.052 GPa, thereby indicating brittle behaviour of the films. Also, no indication of crystalline ternary phases was observed at temperatures up to 600 °C, suggesting that higher temperatures are required for such films to form.

16.
Adv Sci (Weinh) ; 8(3): 2003656, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552874

RESUMO

Enhancing both the energy storage and power capabilities of electrochemical capacitors remains a challenge. Herein, Ti3C2T z MXene is mixed with MoO3 nanobelts in various mass ratios and the mixture is used to vacuum filter binder free, open, flexible, and free-standing films. The conductive Ti3C2T z flakes bridge the nanobelts, facilitating electron transfer; the randomly oriented, and interconnected, MoO3 nanobelts, in turn, prevent the restacking of the Ti3C2T z nanosheets. Benefitting from these advantages, a MoO3/Ti3C2T z film with a 8:2 mass ratio exhibits high gravimetric/volumetric capacities with good cyclability, namely, 837 C g-1 and 1836 C cm-3 at 1 A g-1 for an ≈ 10 µm thick film; and 767 C g-1 and 1664 C cm-3 at 1 A g-1 for ≈ 50 µm thick film. To further increase the energy density, hybrid capacitors are fabricated with MoO3/Ti3C2T z films as the negative electrodes and nitrogen-doped activated carbon as the positive electrodes. This device delivers maximum gravimetric/volumetric energy densities of 31.2 Wh kg-1 and 39.2 Wh L-1, respectively. The cycling stability of 94.2% retention ratio after 10 000 continuous charge/discharge cycles is also noteworthy. The high energy density achieved in this work can pave the way for practical applications of MXene-containing materials in energy storage devices.

17.
ACS Nano ; 15(3): 4287-4293, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33635629

RESUMO

The current quest for two-dimensional transition metal carbides and nitrides (MXenes) has been to circumvent the slow, hazardous, and laborious multistep synthesis procedures associated with conventional chemical MAX phase exfoliation. Here, we demonstrate a one-step synthesis method with local Ti3AlC2 MAX to Ti3C2Tz MXene conversion on the order of milliseconds, facilitated by proton production through solution dissociation under megahertz frequency acoustic excitation. These protons combined with fluorine ions from LiF to selectively etch the MAX phase into MXene, whose delamination is aided by the acoustic forcing. These results have important implications for the future applicability of MXenes, which crucially depend on the development of more efficient synthesis procedures. For proof-of-concept, we show that flexible electrodes fabricated by this method exhibit comparable electrochemical performance to that previously reported.

18.
ACS Nano ; 15(1): 1077-1085, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33415973

RESUMO

The class of two-dimensional metal carbides and nitrides known as MXenes offer a distinct manner of property tailoring for a wide range of applications. The ability to tune the surface chemistry for expanding the property space of MXenes is thus an important topic, although experimental exploration of surface terminals remains a challenge. Here, we synthesized Ti3C2 MXene with unitary, binary, and ternary halogen terminals, e.g., -Cl, -Br, -I, -BrI, and -ClBrI, to investigate the effect of surface chemistry on the properties of MXenes. The electrochemical activity of Br and I elements results in the extraordinary electrochemical performance of the MXenes as cathodes for aqueous zinc ion batteries. The -Br- and -I-containing MXenes, e.g., Ti3C2Br2 and Ti3C2I2, exhibit distinct discharge platforms with considerable capacities of 97.6 and 135 mAh·g-1. Ti3C2(BrI) and Ti3C2(ClBrI) exhibit dual discharge platforms with capacities of 117.2 and 106.7 mAh·g-1. In contrast, the previously discovered MXenes Ti3C2Cl2 and Ti3C2(OF) exhibit no discharge platforms and only ∼50% of capacities and energy densities of Ti3C2Br2. These results emphasize the effectiveness of the Lewis-acidic-melt etching route for tuning the surface chemistry of MXenes and also show promise for expanding the MXene family toward various applications.

20.
Nanoscale ; 13(1): 311-319, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33338088

RESUMO

A vacancy-ordered MXene, Mo1.33CTz, obtained from the selective etching of Al and Sc from the parent i-MAX phase (Mo2/3Sc1/3)2AlC has previously shown excellent properties for supercapacitor applications. Attempts to synthesize the same MXene from another precursor, (Mo2/3Y1/3)2AlC, have not been able to match its forerunner. Herein, we show that the use of an AlY2.3 alloy instead of elemental Al and Y for the synthesis of (Mo2/3Y1/3)2AlC i-MAX, results in a close to 70% increase in sample purity due to the suppression of the main secondary phase, Mo3Al2C. Furthermore, through a modified etching procedure, we obtain a Mo1.33CTz MXene of high structural quality and improve the yield by a factor of 6 compared to our previous efforts. Free-standing films show high volumetric (1308 F cm-3) and gravimetric (436 F g-1) capacitances and a high stability (98% retention) at the level of, or even beyond, those reported for the Mo1.33CTz MXene produced from the Sc-based i-MAX. These results are of importance for the realization of high quality MXenes through use of more abundant elements (Y vs. Sc), while also reducing waste (impurity) material and facilitating the synthesis of a high-performance material for applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...