Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 659: 124216, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38734272

RESUMO

The nasal administration route has been studied for the delivery of active molecules directed to the Central Nervous System, thanks to the anatomical connection between the nasal cavity and the brain. Dimethyl fumarate is used to treat relapsing-remitting multiple sclerosis, with a role as an immunomodulator towards T- T-cells and a cytoprotector towards neurons and glial cells. Its use in therapy is hindered by its low aqueous solubility, and low stability, due to hydrolysis and sublimation at room temperature. To overcome this limitation, in this study we evaluated the feasibility of using two amorphous ß-cyclodextrin derivatives, namely hydroxypropyl ß-cyclodextrin and methyl ß-cyclodextrin, to obtain a nasally administrable powder with a view to nose-to-brain administration. Initially, the interaction product was studied using different analytical methods (differential scanning calorimetry, Fourier transform infrared spectroscopy and powder X-ray diffraction) to detect the occurrence of binary product formation, while phase solubility analysis was used to probe the complexation in solution. The dimethyl fumarate-cyclodextrin binary product showing best solubility and stability properties was subsequently used in the development of a chitosan-based mucoadhesive nasally administrable powder comparing different preparative methods. The best performance in terms of both hydrolytic stability and DMF recovery was achieved by the powder obtained via freeze-drying.


Assuntos
Administração Intranasal , Quitosana , Fumarato de Dimetilo , Estabilidade de Medicamentos , Pós , Solubilidade , beta-Ciclodextrinas , Fumarato de Dimetilo/administração & dosagem , Fumarato de Dimetilo/química , Fumarato de Dimetilo/farmacocinética , Quitosana/química , Quitosana/administração & dosagem , beta-Ciclodextrinas/química , beta-Ciclodextrinas/administração & dosagem , Encéfalo/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Varredura Diferencial de Calorimetria , Difração de Raios X/métodos
2.
Pharmaceutics ; 15(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37111564

RESUMO

Berberine (BBR) is known for its antitumor activity and photosensitizer properties in anti-cancer photodynamic therapy (PDT), and it has previously been favorably assayed against glioblastoma multiforme (GBM)-derived cells. In this work, two BBR hydrophobic salts, dodecyl sulfate (S) and laurate (L), have been encapsulated in PLGA-based nanoparticles (NPs), chitosan-coated by the addition of chitosan oleate in the preparation. NPs were also further functionalized with folic acid. All the BBR-loaded NPs were efficiently internalized into T98G GBM established cells, and internalization increased in the presence of folic acid. However, the highest mitochondrial co-localization percentages were obtained with BBR-S NPs without folic acid content. In the T98G cells, BBR-S NPs appeared to be the most efficient in inducing cytotoxicity events and were therefore selected to assess the effect of photodynamic stimulation (PDT). As a result, PDT potentiated the viability reduction for the BBR-S NPs at all the studied concentrations, and a roughly 50% reduction of viability was obtained. No significant cytotoxic effect on normal rat primary astrocytes was observed. In GBM cells, a significant increase in early and late apoptotic events was scored by BBR NPs, with a further increase following the PDT scheme. Furthermore, a significantly increased depolarization of mitochondria was highlighted following BBR-S NPs' internalization and mostly after PDT stimulation, compared to untreated and PDT-only treated cells. In conclusion, these results highlighted the efficacy of the BBR-NPs-based strategy coupled with photoactivation approaches to induce favorable cytotoxic effects in GBM cells.

3.
Front Pharmacol ; 14: 1129882, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969863

RESUMO

Introduction: Initiation and progression of intervertebral disk degeneration are linked to oxidative stress, with reactive oxygen species being a key factor. Therefore, as a potentially novel approach able to regenerate the damaged intervertebral disk, this work aimed to prepare an "active per sé" drug delivery system by combining sericin and crocetin: both are bioactive compounds with antioxidant, anti-inflammatory, immunomodulant and regenerative properties. Methods: In detail, sericin nanoparticles were prepared using crocetin as a cross-linker; then, the nanoparticle dispersions were dried by spray drying as it is (NP), with an excess of sericin (NPS) or crocin/crocetin (NPMix), obtaining three microparticle formulations. Results and Discussion: Before drying, the nanoparticles were nanometric (about 250 nm), with a negative surface charge, and appeared spherical and smooth. Following the drying process, spherical and smooth microparticles were obtained, with a mean diameter of about 1.7-2.30 µm. NPMix was the most active in antioxidant and anti-tyrosinase activities, likely due to the excess of crocin/crocetin, while NPS had the best anti-elastase activity, likely due to sericin in excess. Furthermore, all the formulations could prevent oxidative stress damage on nucleus pulposus cells, with NPMix being the best. Overall, the intrinsic anti-tyrosinase and anti-elastase activities and the ability to protect from oxidative stress-induced damages justify future investigations of these "active per sé" formulations in treating or preventing intervertebral disk degeneration.

4.
Antioxidants (Basel) ; 12(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36829832

RESUMO

Clove oil (CO) is a powerful antioxidant essential oil (EO) with anti-inflammatory, anesthetic, and anti-infective properties. It can be therefore considered a good candidate for wound-healing applications, especially for chronic or diabetic wounds or burns, where the balance of reactive oxygen species (ROS) production and detoxification is altered. However, EOs require suitable formulations to be efficiently administered in moist wound environments. Chitosan hydrophobically modified by an ionic interaction with oleic acid (chitosan oleate, CSO) was used in the present work to stabilize CO nanoemulsions (NEs). The dimensions of the NE were maintained at around 300 nm as the volume distribution for up to six months, and the CO content did not decrease to under 80% over 4 months, confirming the good stabilizing properties of CSO. The antioxidant properties of the CO NE were evaluated in vitro by a 2,2-diphenil-2-picrylhydrazyl hydrate (DPPH) assay, and in fibroblast cell lines by electron paramagnetic resonance (EPR) using α-phenyl-N-tert-butyl nitrone (PBN) as a spin trap; a protective effect was obtained comparable to that obtained with α-tocopherol treatment. In a murine burn model, the ability of CO formulations to favor macroscopic wound closure was evidenced, and a histological analysis revealed a positive effect of the CO NE on the reparation of the lesion after 18 days. Samples of wounds at 7 days were subjected to a histological analysis and parallel dosage of lipid peroxidation by means of a thiobarbituric acid-reactive substances (TBARS) assay, confirming the antioxidant and anti-inflammatory activity of the CO NE.

5.
Pharmaceutics ; 15(2)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36839705

RESUMO

Sodium alginate (SA)-based hydrogels are often employed as bioink for three-dimensional (3D) scaffold bioprinting. They offer a suitable environment for cell proliferation and differentiation during tissue regeneration and also control the release of growth factors and mesenchymal stem cell secretome, which is useful for scaffold biointegration. However, such hydrogels show poor mechanical properties, fast-release kinetics, and low biological performance, hampering their successful clinical application. In this work, silk fibroin (SF), a protein with excellent biomechanical properties frequently used for controlled drug release, was blended with SA to obtain improved bioink and scaffold properties. Firstly, we produced a printable SA solution containing SF capable of the conformational change from Silk I (random coil) to Silk II (ß-sheet): this transition is a fundamental condition to improve the scaffold's mechanical properties. Then, the SA-SF blends' printability and shape fidelity were demonstrated, and mechanical characterization of the printed hydrogels was performed: SF significantly increased compressive elastic modulus, while no influence on tensile response was detected. Finally, the release profile of Lyosecretome-a freeze-dried formulation of MSC-secretome containing extracellular vesicles (EV)-from scaffolds was determined: SF not only dramatically slowed the EV release rate, but also modified the kinetics and mechanism release with respect to the baseline of SA hydrogel. Overall, these results lay the foundation for the development of SA-SF bioinks with modulable mechanical and EV-release properties, and their application in 3D scaffold printing.

6.
J Immunother Cancer ; 11(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36697251

RESUMO

BACKGROUND: The current challenge for immunotherapies is to generate effective antitumor immunity. Since tumor immune escape mechanisms do not impact pre-existing and consolidated immune responses, we tested the hypothesis of redirecting a pregenerated immunity to cancer: to recall a non-tumor antigen response against the tumor, silk fibroin nanoparticles (SFNs) have been selected as 'Trojan-horse' carriers, promoting the antigen uptake by the tumor cells. METHODS: SFNs have been loaded with either ovalbumin (OVA) or CpG oligonucleotide (CpG) as antigen or adjuvant, respectively. In vitro uptake of SFNs by tumor (B16/F10 melanoma and MB49 bladder cancer) or dendritic cells, as well as the presence of OVA-specific T cells in splenic and tumor-infiltrating lymphocytes, were assessed by cytometric analyses. Proof-of-concept of in vivo efficacy was achieved in an OVA-hyperimmune B16/F10 murine melanoma model: SFNs-OVA or SFNs-CpG were injected, separately or in association, into the subcutaneous peritumoral area. Cancer dimensions/survival time were monitored, while, at the molecular level, system biology approaches based on graph theory and experimental proteomic data were performed. RESULTS: SFNs were efficiently in vitro uptaken by cancer and dendritic cells. In vivo peritumor administration of SFNs-OVA redirected OVA-specific cytotoxic T cells intratumorally. Proteomics and systems biology showed that peritumoral treatment with either SFNs-OVA or SFNs-CpG dramatically modified tumor microenvironment with respect to the control (CTR), mainly involving functional modules and hubs related to angiogenesis, inflammatory mediators, immune function, T complex and serpins expression, redox homeostasis, and energetic metabolism. Both SFNs-OVA and SFNs-CpG significantly delayed melanoma growth/survival time, and their effect was additive. CONCLUSIONS: Both SFNs-OVA and SFNs-CpG induce effective anticancer response through complementary mechanisms and show the efficacy of an innovative active immunotherapy approach based on the redirection of pre-existing immunity against cancer cells. This approach could be universally applied for solid cancer treatments if translated into the clinic using re-call antigens of childhood vaccination.


Assuntos
Fibroínas , Melanoma Experimental , Camundongos , Animais , Proteômica , Linfócitos T Citotóxicos , Adjuvantes Imunológicos , Ovalbumina , Microambiente Tumoral
7.
Biomedicines ; 10(5)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35625800

RESUMO

Recently, 3D-printed scaffolds for the controlled release of mesenchymal stem cell (MSC) freeze-dried secretome (Lyosecretome) have been proposed to enhance scaffold osteoinduction and osteoconduction; coprinting of poly(ε-caprolactone) (PCL) with alginate hydrogels allows adequate mechanical strength to be combined with the modulable kinetics of the active principle release. This study represents the feasibility study for the sterile production of coprinted scaffolds and the proof of concept for their in vitro biological efficacy. Sterile scaffolds were obtained, and Lyosecretome enhanced their colonization by MSCs, sustaining differentiation towards the bone line in an osteogenic medium. Indeed, after 14 days, the amount of mineralized matrix detected by alizarin red was significantly higher for the Lyosecretome scaffolds. The amount of osteocalcin, a specific bone matrix protein, was significantly higher at all the times considered (14 and 28 days) for the Lyosecretome scaffolds. Confocal microscopy further confirmed such results, demonstrating improved osteogenesis with the Lyosecretome scaffolds after 14 and 28 days. Overall, these results prove the role of MSC secretome, coprinted in PCL/alginate scaffolds, in inducing bone regeneration; sterile scaffolds containing MSC secretome are now available for in vivo pre-clinical tests of bone regeneration.

8.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35457134

RESUMO

Recently, we proposed a Good Manufacturing Practice (GMP)-compliant production process for freeze-dried mesenchymal stem cell (MSC)-secretome (lyo-secretome): after serum starvation, the cell supernatant was collected, and the secretome was concentrated by ultrafiltration and freeze-dried, obtaining a standardized ready-to-use and stable powder. In this work, we modified the type of human platelet lysate (HPL) used as an MSC culture supplement during the lyo-secretome production process: the aim was to verify whether this change had an impact on product quality and also whether this new procedure could be validated according to GMP, proving the process robustness. MSCs were cultured with two HPLs: the standard previously validated one (HPL-E) and the new one (HPL-S). From the same pool of platelets, two batches of HPL were obtained: HPL-E (by repeated freezing and thawing cycles) and HPL-S (by adding Ca-gluconate to form a clot and its subsequent mechanical wringing). Bone marrow MSCs from three donors were separately cultured with the two HPLs until the third passage and then employed to produce lyo-secretome. The following indicators were selected to evaluate the process performance: (i) the lyo-secretome quantitative composition (in lipids and proteins), (ii) the EVs size distribution, and (iii) anti-elastase and (iv) immunomodulant activity as potency tests. The new HPL supplementation for MSCs culture induced only a few minimal changes in protein/lipid content and EVs size distribution; despite this, it did not significantly influence biological activity. The donor intrinsic MSCs variability in secretome secretion instead strongly affected the quality of the finished product and could be mitigated by concentrating the final product to reach a determined protein (and lipid) concentration. In conclusion, the modification of the type of HPL in the MSCs culture during lyo-secretome production induces only minimal changes in the composition but not in the potency, and therefore, the new procedure can be validated according to GMP.


Assuntos
Células-Tronco Mesenquimais , Ultrafiltração , Plaquetas/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Lipídeos , Células-Tronco Mesenquimais/metabolismo , Secretoma
9.
Animals (Basel) ; 11(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34828003

RESUMO

In recent years, mesenchymal stromal cells (MSCs) have shown promise as a therapy in treating musculoskeletal diseases, and it is currently believed that their therapeutic effect is mainly related to the release of proteins and extracellular vesicles (EVs), known as secretome. In this work, three batches of canine MSC-secretome were prepared by standardized processes according to the current standard ISO9001 and formulated as a freeze-dried powder named Lyosecretome. The final products were characterized in protein and lipid content, EV size distribution and tested to ensure the microbiological safety required for intraarticular injection. Lyosecretome induced the proliferation of adipose tissue-derived canine MSCs, tenocytes, and chondrocytes in a dose-dependent manner and showed anti-elastase activity, reaching 85% of inhibitory activity at a 20 mg/mL concentration. Finally, to evaluate the safety of the preparation, three patients affected by bilateral knee or elbow osteoarthritis were treated with two intra-articular injections (t = 0 and t = 40 days) of the allogeneic Lyosecretome (20 mg corresponding 2 × 106 cell equivalents) resuspended in hyaluronic acid in one joint and placebo (mannitol resuspended in hyaluronic acid) in the other joint. To establish the safety of the treatment, the follow-up included a questionnaire addressed to the owner and orthopaedic examinations to assess lameness grade, pain score, functional disability score and range of motion up to day 80 post-treatment. Overall, the collected data suggest that intra-articular injection of allogeneic Lyosecretome is safe and does not induce a clinically significant local or systemic adverse response.

10.
Pharmaceutics ; 13(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34575417

RESUMO

Tissue repair and regeneration is an interdisciplinary field focusing on developing bioactive substitutes aimed at restoring pristine functions of damaged, diseased tissues. Biomaterials, intended as those materials compatible with living tissues after in vivo administration, play a pivotal role in this area and they have been successfully studied and developed for several years. Namely, the researches focus on improving bio-inert biomaterials that well integrate in living tissues with no or minimal tissue response, or bioactive materials that influence biological response, stimulating new tissue re-growth. This review aims to gather and introduce, in the context of Italian scientific community, cutting-edge advancements in biomaterial science applied to tissue repair and regeneration. After introducing tissue repair and regeneration, the review focuses on biodegradable and biocompatible biomaterials such as collagen, polysaccharides, silk proteins, polyesters and their derivatives, characterized by the most promising outputs in biomedical science. Attention is pointed out also to those biomaterials exerting peculiar activities, e.g., antibacterial. The regulatory frame applied to pre-clinical and early clinical studies is also outlined by distinguishing between Advanced Therapy Medicinal Products and Medical Devices.

11.
Cancers (Basel) ; 13(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34503247

RESUMO

Surgical resection is the gold standard for the treatment of many kinds of tumor, but its success depends on the early diagnosis and the absence of metastases. However, many deep-seated tumors (liver, pancreas, for example) are often unresectable at the time of diagnosis. Chemotherapies and radiotherapies are a second line for cancer treatment. The "enhanced permeability and retention" (EPR) effect is believed to play a fundamental role in the passive uptake of drug-loaded nanocarriers, for example polymeric nanoparticles, in deep-seated tumors. However, criticisms of the EPR effect were recently raised, particularly in advanced human cancers: obstructed blood vessels and suppressed blood flow determine a heterogeneity of the EPR effect, with negative consequences on nanocarrier accumulation, retention, and intratumoral distribution. Therefore, to improve the nanomedicine uptake, there is a strong need for "EPR enhancers". Electrochemotherapy represents an important tool for the treatment of deep-seated tumors, usually combined with the systemic (intravenous) administration of anticancer drugs, such as bleomycin or cisplatin. A possible new strategy, worthy of investigation, could be the use of this technique as an "EPR enhancer" of a target tumor, combined with the intratumoral administration of drug-loaded nanoparticles. This is a general overview of the rational basis for which EP could be envisaged as an "EPR enhancer" in nanomedicine.

12.
Pharmaceutics ; 13(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34452088

RESUMO

Producing mesenchymal stem cell (MSC)-secretome for dose escalation studies and clinical practice requires scalable and good manufacturing practice (GMP)-compliant production procedures and formulation into a standardized medicinal product. Starting from a method that combines ultrafiltration and freeze-drying to transform MSC-secretome into a pharmaceutical product, the lyosecretome, this work aims to: (i) optimize the lyosecretome formulation; (ii) investigate sources of variability that can affect the robustness of the manufacturing process; (iii) modify the ultrafiltration step to obtain a more standardized final product. Design of experiments and principal component analysis of the data were used to study the influence of batch production, lyophilization, mannitol (M)/sucrose (S) binary mixture, selected as cryoprotectant excipients, and the total amount of excipients on the extracellular vesicles (EV) particle size, the protein and lipid content and the in vitro anti-elastase. The different excipients ratios did not affect residual moisture or EV particle size; simultaneously, proteins and lipids were better preserved in the freeze-dried product using the maximum total concentration of excipients (1.5% w/v) with a M:S ratio of about 60% w/w. The anti-elastase activity was instead better preserved using 0.5% w/w of M as excipient. The secretome batch showed to be the primary source of variability; therefore, the manufacturing process has been modified and then validated: the final product is now concentrated to reach a specific protein (and lipid) concentration instead of cell equivalent concentration. The new standardization approach led to a final product with more reproducible quali-quantitative composition and higher biological activity.

13.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445150

RESUMO

Titanium is one of the most frequently used materials in bone regeneration due to its good biocompatibility, excellent mechanical properties, and great osteogenic performance. However, osseointegration with host tissue is often not definite, which may cause implant failure at times. The present study investigates the capacity of the mesenchymal stem cell (MSC)-secretome, formulated as a ready-to-use and freeze-dried medicinal product (the Lyosecretome), to promote the osteoinductive and osteoconductive properties of titanium cages. In vitro tests were conducted using adipose tissue-derived MSCs seeded on titanium cages with or without Lyosecretome. After 14 days, in the presence of Lyosecretome, significant cell proliferation improvement was observed. Scanning electron microscopy revealed the cytocompatibility of titanium cages: the seeded MSCs showed a spread morphology and an initial formation of filopodia. After 7 days, in the presence of Lyosecretome, more frequent and complex cellular processes forming bridges across the porous surface of the scaffold were revealed. Also, after 14 and 28 days of culturing in osteogenic medium, the amount of mineralized matrix detected by alizarin red was significantly higher when Lyosecretome was used. Finally, improved osteogenesis with Lyosecretome was confirmed by confocal analysis after 28 and 56 days of treatment, and demonstrating the production by osteoblast-differentiated MSCs of osteocalcin, a specific bone matrix protein.


Assuntos
Regeneração Óssea , Substitutos Ósseos/química , Células-Tronco Mesenquimais/citologia , Titânio/química , Proliferação de Células , Células Cultivadas , Liofilização , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Alicerces Teciduais/química
14.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200627

RESUMO

In the last decades, it has been demonstrated that the regenerative therapeutic efficacy of mesenchymal stromal cells is primarily due to the secretion of soluble factors and extracellular vesicles, collectively known as secretome. In this context, our work described the preparation and characterization of a freeze-dried secretome (Lyosecretome) from adipose tissue-derived mesenchymal stromal cells for the therapy of equine musculoskeletal disorder. An intraarticular injectable pharmaceutical powder has been formulated, and the technological process has been validated in an authorized facility for veterinary clinical-use medicinal production. Critical parameters for quality control and batch release have been identified regarding (i) physicochemical properties; (ii) extracellular vesicle morphology, size distribution, and surface biomarker; (iii) protein and lipid content; (iv) requirements for injectable pharmaceutical dosage forms such as sterility, bacterial endotoxin, and Mycoplasma; and (v) in vitro potency tests, as anti-elastase activity and proliferative activity on musculoskeletal cell lines (tenocytes and chondrocytes) and mesenchymal stromal cells. Finally, proteins putatively responsible for the biological effects have been identified by Lyosecretome proteomic investigation: IL10RA, MXRA5, RARRES2, and ANXA1 modulate the inflammatory process RARRES2, NOD1, SERPINE1, and SERPINB9 with antibacterial activity. The work provides a proof-of-concept for the manufacturing of clinical-grade equine freeze-dried secretome, and prototypes are now available for safety and efficacy clinical trials in the treatment of equine musculoskeletal diseases.

15.
Pharmaceutics ; 13(5)2021 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-34065101

RESUMO

The nose-to-brain delivery route is used to bypass the blood-brain barrier and deliver drugs directly into the brain. Over the years, significant signs of progress have been made in developing nano-drug delivery systems to address the very low drug transfer levels seen with conventional formulations (e.g., nasal solutions). In this paper, sericin nanoparticles were prepared using crocetin as a new bioactive natural cross-linker (NPc) and compared to sericin nanoparticles prepared with glutaraldehyde (NPg). The mean diameter of NPc and NPg was about 248 and 225 nm, respectively, and suitable for nose-to-brain delivery. The morphological investigation revealed that NPc are spherical-like particles with a smooth surface, whereas NPg seem small and rough. NPc remained stable at 4 °C for 28 days, and when freeze-dried with 0.1% w/v of trehalose, the aggregation was prevented. The use of crocetin as a natural cross-linker significantly improved the in vitro ROS-scavenging ability of NPc with respect to NPg. Both formulations were cytocompatible at all the concentrations tested on human fibroblasts and Caco-2 cells and protected them against oxidative stress damage. In detail, for NPc, the concentration of 400 µg/mL resulted in the most promising to maintain the cell metabolic activity of fibroblasts higher than 90%. Overall, the results reported in this paper support the employment of NPc as a nose-to-brain drug delivery system, as the brain targeting of antioxidants is a potential tool for the therapy of neurological diseases.

16.
Cells ; 10(5)2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068958

RESUMO

To date, more than 100 million people worldwide have recovered from COVID-19. Unfortunately, although the virus is eradicated in such patients, fibrotic irreversible interstitial lung disease (pulmonary fibrosis, PF) is clinically evident. Given the vast numbers of individuals affected, it is urgent to design a strategy to prevent a second wave of late mortality associated with COVID-19 PF as a long-term consequence of such a devastating pandemic. Available antifibrotic therapies, namely nintedanib and pirfenidone, might have a role in attenuating profibrotic pathways in SARS-CoV-2 infection but are not economically sustainable by national health systems and have critical adverse effects. It is our opinion that the mesenchymal stem cell secretome could offer a new therapeutic approach in treating COVID-19 fibrotic lungs through its anti-inflammatory and antifibrotic factors.


Assuntos
Fatores Biológicos/farmacologia , COVID-19/complicações , Células-Tronco Mesenquimais/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fatores Biológicos/metabolismo , Fatores Biológicos/uso terapêutico , COVID-19/economia , COVID-19/virologia , Humanos , Indóis/administração & dosagem , Indóis/efeitos adversos , Indóis/economia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/virologia , Fibrose Pulmonar/economia , Fibrose Pulmonar/virologia , Piridonas/administração & dosagem , Piridonas/efeitos adversos , Piridonas/economia , SARS-CoV-2/patogenicidade , Tratamento Farmacológico da COVID-19
17.
Cancers (Basel) ; 13(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803385

RESUMO

Arg-Gly-Asp (RGD)-based cyclopentapeptides (cRGDs) have a high affinity towards integrin αvß3 and αvß5, which are overexpressed by many tumor cells. Here, curcumin-loaded silk fibroin nanoparticles (SFNs) have been functionalized on the surface with cRGD to provide active targeting towards tumor cells; a "click reaction" between the RGD-based cyclopentapeptide carrying an azide group and triple-bond-functionalized nanoparticles has been exploited. Both naked and functionalized SFNs were less than 200 nm in diameter and showed a round-shaped morphology but, after functionalization, SFNs increased in size and protein molecular weight. The functionalization of SFNs' surfaces with cRGD provided active internalization by cells overexpressing integrin receptors. At the lowest concentration tested (0.01 mg/mL), functionalized SFNs showed more effective uptake with respect to the naked by tumor cells that overexpress integrin receptors (but not for non-overexpressing ones). In contrast, at higher concentrations, the non-specific cell membrane protein-particle interactions are promoted and coupled to specific and target mediated uptake. Visual observations by fluorescence microscopy suggested that SFNs bind to integrin receptors on the cell surface and are then internalized by endocytosis. Overall, SFN functionalization provided in vitro active targeting for site-specific delivery of anticancer drugs, boosting activity and sparing healthy organs.

18.
Pharmaceutics ; 13(4)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918073

RESUMO

Three-dimensional printing of poly(ε-caprolactone) (PCL) is a consolidated scaffold manufacturing technique for bone regenerative medicine. Simultaneously, the mesenchymal stem/stromal cell (MSC) secretome is osteoinductive, promoting scaffold colonization by cells, proliferation, and differentiation. The present paper combines 3D-printed PCL scaffolds with lyosecretome, a freeze-dried formulation of MSC secretome, containing proteins and extracellular vesicles (EVs). We designed a lyosecretome 3D-printed scaffold by two loading strategies: (i) MSC secretome adsorption on 3D-printed scaffold and (ii) coprinting of PCL with an alginate-based hydrogel containing MSC secretome (at two alginate concentrations, i.e., 6% or 10% w/v). A fast release of proteins and EVs (a burst of 75% after 30 min) was observed from scaffolds obtained by absorption loading, while coprinting of PCL and hydrogel, encapsulating lyosecretome, allowed a homogeneous loading of protein and EVs and a controlled slow release. For both loading modes, protein and EV release was governed by diffusion as revealed by the kinetic release study. The secretome's diffusion is influenced by alginate, its concentration, or its cross-linking modes with protamine due to the higher steric hindrance of the polymer chains. Moreover, it is possible to further slow down protein and EV release by changing the scaffold shape from parallelepiped to cylindrical. In conclusion, it is possible to control the release kinetics of proteins and EVs by changing the composition of the alginate hydrogel, the scaffold's shape, and hydrogel cross-linking. Such scaffold prototypes for bone regenerative medicine are now available for further testing of safety and efficacy.

19.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920046

RESUMO

SmartBone® (SB) is a biohybrid bone substitute advantageously proposed as a class III medical device for bone regeneration in reconstructive surgeries (oral, maxillofacial, orthopedic, and oncology). In the present study, a new strategy to improve SB osteoinductivity was developed. SB scaffolds were loaded with lyosecretome, a freeze-dried formulation of mesenchymal stem cell (MSC)-secretome, containing proteins and extracellular vesicles (EVs). Lyosecretome-loaded SB scaffolds (SBlyo) were prepared using an absorption method. A burst release of proteins and EVs (38% and 50% after 30 min, respectively) was observed, and then proteins were released more slowly with respect to EVs, most likely because they more strongly adsorbed onto the SB surface. In vitro tests were conducted using adipose tissue-derived stromal vascular fraction (SVF) plated on SB or SBlyo. After 14 days, significant cell proliferation improvement was observed on SBlyo with respect to SB, where cells filled the cavities between the native trabeculae. On SB, on the other hand, the process was still present, but tissue formation was less organized at 60 days. On both scaffolds, cells differentiated into osteoblasts and were able to mineralize after 60 days. Nonetheless, SBlyo showed a higher expression of osteoblast markers and a higher quantity of newly formed trabeculae than SB alone. The quantification analysis of the newly formed mineralized tissue and the immunohistochemical studies demonstrated that SBlyo induces bone formation more effectively. This osteoinductive effect is likely due to the osteogenic factors present in the lyosecretome, such as fibronectin, alpha-2-macroglobulin, apolipoprotein A, and TGF-ß.


Assuntos
Matriz Óssea/química , Regeneração Óssea/efeitos dos fármacos , Substitutos Ósseos/farmacologia , Transplante de Células-Tronco Mesenquimais , Animais , Substitutos Ósseos/química , Bovinos , Diferenciação Celular/efeitos dos fármacos , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Vesículas Extracelulares/química , Vesículas Extracelulares/genética , Humanos , Células-Tronco Mesenquimais/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Procedimentos de Cirurgia Plástica/métodos
20.
Int J Pharm ; 589: 119861, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32911044

RESUMO

Colon drug delivery is aimed at the administration of selected drugs to act locally or even systematically. Corticosteroid drugs are often used exerting even pronounced side effects due to systemic absorption. Here a new drug delivery system (DDS) based on the chemical conjugation of ß-cyclodextrin to inulin to form the INUCD bioconjugate is described. It was designed with the aim to provide this DDS with colon degradable portions (inulin) which degradation products have direct beneficial effects on the well-being of the colon and with a carrier that can solubilize hydrophobic drugs (ß-cyclodextrin). This system was specifically designed to promote a local/topical activity with a significant reduction of the drug systemic absorption. The INUCD bioconjugate was obtained by a simple chemistry binding ß-cyclodextrin to an inulin succinate previously synthesized. The bioconjugate was then characterized in terms of physicochemical properties by ATR-FTIR, 1H NMR, DSC and TGA, DLS and SEM. Furthermore phase-solubility test by using curcumin as a model drug were performed as well as biologic evaluations for cytocompatibility and drug transport across in vitro simulated physiological barriers. Moreover enzymatic degradation studies by inulinase were performed. From the gained results a predictable local drug release of the payload could be attained so allowing a local delivery of e.g. corticosteroids thus avoiding a systemic absorption especially in prolonged therapies.


Assuntos
Preparações Farmacêuticas , beta-Ciclodextrinas , Colo , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Inulina , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...