Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 22(1): 1, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36597126

RESUMO

BACKGROUND: Small cell lung cancer (SCLC) is an aggressive lung cancer subtype that is associated with high recurrence and poor prognosis. Due to lack of potential drug targets, SCLC patients have few therapeutic options. MicroRNAs (miRNAs) provide an interesting repertoire of therapeutic molecules; however, the identification of miRNAs regulating SCLC growth and metastasis and their precise regulatory mechanisms are not well understood. METHODS: To identify novel miRNAs regulating SCLC, we performed miRNA-sequencing from donor/patient serum samples and analyzed the bulk RNA-sequencing data from the tumors of SCLC patients. Further, we developed a nanotechnology-based, highly sensitive method to detect microRNA-1 (miR-1, identified miRNA) in patient serum samples and SCLC cell lines. To assess the therapeutic potential of miR-1, we developed various in vitro models, including miR-1 sponge (miR-1Zip) and DOX-On-miR-1 (Tet-ON) inducible stable overexpression systems. Mouse models derived from intracardiac injection of SCLC cells (miR-1Zip and DOX-On-miR-1) were established to delineate the role of miR-1 in SCLC metastasis. In situ hybridization and immunohistochemistry were used to analyze the expression of miR-1 and target proteins (mouse and human tumor specimens), respectively. Dual-luciferase assay was used to validate the target of miR-1, and chromatin immunoprecipitation assay was used to investigate the protein-gene interactions. RESULTS: A consistent downregulation of miR-1 was observed in tumor tissues and serum samples of SCLC patients compared to their matched normal controls, and these results were recapitulated in SCLC cell lines. Gain of function studies of miR-1 in SCLC cell lines showed decreased cell growth and oncogenic signaling, whereas loss of function studies of miR-1 rescued this effect. Intracardiac injection of gain of function of miR-1 SCLC cell lines in the mouse models showed a decrease in distant organ metastasis, whereas loss of function of miR-1 potentiated growth and metastasis. Mechanistic studies revealed that CXCR4 is a direct target of miR-1 in SCLC. Using unbiased transcriptomic analysis, we identified CXCR4/FOXM1/RRM2 as a unique axis that regulates SCLC growth and metastasis. Our results further showed that FOXM1 directly binds to the RRM2 promoter and regulates its activity in SCLC. CONCLUSIONS: Our findings revealed that miR-1 is a critical regulator for decreasing SCLC growth and metastasis. It targets the CXCR4/FOXM1/RRM2 axis and has a high potential for the development of novel SCLC therapies. MicroRNA-1 (miR-1) downregulation in the tumor tissues and serum samples of SCLC patients is an important hallmark of tumor growth and metastasis. The introduction of miR-1 in SCLC cell lines decreases cell growth and metastasis. Mechanistically, miR-1 directly targets CXCR4, which further prevents FOXM1 binding to the RRM2 promoter and decreases SCLC growth and metastasis.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Carcinoma de Pequenas Células do Pulmão , Humanos , Animais , Camundongos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteína Forkhead Box M1/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
2.
Oncogene ; 42(10): 759-770, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36624189

RESUMO

Mucin4 (MUC4) appears early during pancreatic intraepithelial neoplasia-1 (PanIN1), coinciding with the expression of epidermal growth factor receptor-1 (EGFR). The EGFR signaling is required for the onset of Kras-driven pancreatic ductal adenocarcinoma (PDAC); however, the players and mechanisms involved in sustained EGFR signaling in early PanIN lesions remain elusive. We generated a unique Esai-CRISPR-based Muc4 conditional knockout murine model to evaluate its effect on PDAC pathology. The Muc4 depletion in the autochthonous murine model carrying K-ras and p53 mutations (K-rasG12D; TP53R172H; Pdx-1cre, KPC) to generate the KPCM4-/- murine model showed a significant delay in the PanIN lesion formation with a significant reduction (p < 0.01) in EGFR (Y1068) and ERK1/2 (T202/Y204) phosphorylation. Further, a significant decrease (p < 0.01) in Sox9 expression in PanIN lesions of KPCM4-/- mice suggested the impairment of acinar-to-ductal metaplasia in Muc4-depleted cells. The biochemical analyses demonstrated that MUC4, through its juxtamembrane EGF-like domains, interacts with the EGFR ectodomain, and its cytoplasmic tail prevents EGFR ubiquitination and subsequent proteasomal degradation upon ligand stimulation, leading to sustained downstream oncogenic signaling. Targeting the MUC4 and EGFR interacting interface provides a promising strategy to improve the efficacy of EGFR-targeted therapies in PDAC and other MUC4-expressing malignancies.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Fosforilação , Modelos Animais de Doenças , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/genética , Carcinogênese , Receptores ErbB/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas
3.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35457216

RESUMO

The most pressing concerns in environmental remediation are the design and development of catalysts with benign, low-cost, and efficient photocatalytic activity. The present study effectively generated a flower-like indium oxide (In2O3-MF) catalyst employing a convenient MOF-based solvothermal self-assembly technique. The In2O3-MF photocatalyst exhibits a flower-like structure, according to morphology and structural analysis. The enhanced photocatalytic activity of the In2O3-MF catalyst for 4-nitrophenol (4-NP) and methylene blue (MB) is likely due to its unique 3D structure, which includes a large surface area (486.95 m2 g-1), a wide spectrum response, and the prevention of electron-hole recombination compared to In2O3-MR (indium oxide-micro rod) and In2O3-MD (indium oxide-micro disc). In the presence of NaBH4 and visible light, the catalytic performances of the In2O3-MF, In2O3-MR, and In2O3-MD catalysts for the reduction of 4-NP and MB degradation were investigated. Using In2O3-MF as a catalyst, we were able to achieve a 99.32 percent reduction of 4-NP in 20 min and 99.2 percent degradation of MB in 3 min. Interestingly, the conversion rates of catalytic 4-NP and MB were still larger than 95 and 96 percent after five consecutive cycles of catalytic tests, suggesting that the In2O3-MF catalyst has outstanding catalytic performance and a high reutilization rate.


Assuntos
Recuperação e Remediação Ambiental , Estruturas Metalorgânicas , Catálise , Luz , Azul de Metileno
4.
Semin Cancer Biol ; 86(Pt 3): 914-930, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34968667

RESUMO

Brain metastasis (BrM) is one of the major causes of death in cancer patients and is associated with an estimated 10-40 % of total cancer cases. The survival rate of brain metastatic patients has not improved due to intratumor heterogeneity, the survival adaptations of brain homing metastatic cells, and the lack of understanding of underlying molecular mechanisms that limit the availability of effective therapies. The heterogeneous population of immune cells and tumor-initiating cells or cancer stem cells in the tumor microenvironment (TME) release various factors, such as chemokines that upon binding to their cognate receptors enhance tumor growth at primary sites and help tumor cells metastasize to the brain. Furthermore, brain metastatic sites have unique heterogeneous microenvironment that fuels cancer cells in establishing BrM. This review explores the crosstalk of chemokines with the heterogeneous TME during the progression of BrM and recognizes potential therapeutic approaches. We also discuss and summarize different targeted, immunotherapeutic, chemotherapeutic, and combinatorial strategies (with chemo-/immune- or targeted-therapies) to attenuate chemokines mediated BrM.


Assuntos
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/prevenção & controle , Quimiocinas , Células-Tronco Neoplásicas , Encéfalo , Microambiente Tumoral , Metástase Neoplásica
5.
Acta Neuropathol Commun ; 9(1): 195, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922631

RESUMO

Haploinsufficiency of chromosome 17p and c-Myc amplification distinguish group 3 medulloblastomas which are associated with early metastasis, rapid recurrence, and swift mortality. Tumor suppressor genes on this locus have not been adequately characterized. We elucidated the role of miR-212-3p in the pathophysiology of group 3 tumors. First, we learned that miR-212-3p undergoes epigenetic silencing by histone modifications in group 3 tumors. Restoring its expression reduced cancer cell proliferation, migration, colony formation, and wound healing in vitro and attenuated tumor burden and improved survival in vivo. MiR-212-3p also triggered c-Myc destabilization and degradation, leading to elevated apoptosis. We then isolated an oncogenic target of miR-212-3p, i.e. NFIB, a nuclear transcription factor implicated in metastasis and recurrence in various cancers. Increased expression of NFIB was confirmed in group 3 tumors and associated with poor survival. NFIB silencing reduced cancer cell proliferation, migration, and invasion. Concurrently, reduced medullosphere formation and stem cell markers (Nanog, Oct4, Sox2, CD133) were noted. These results substantiate the tumor-suppressive role of miR-212-3p in group 3 MB and identify a novel oncogenic target implicated in metastasis and tumor recurrence.


Assuntos
Neoplasias Cerebelares/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Meduloblastoma/metabolismo , MicroRNAs/metabolismo , Fatores de Transcrição NFI/metabolismo , Animais , Células Cultivadas , Neoplasias Cerebelares/genética , Modelos Animais de Doenças , Humanos , Meduloblastoma/genética , Camundongos , MicroRNAs/genética , Fatores de Transcrição NFI/genética
6.
J Exp Clin Cancer Res ; 40(1): 335, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34696786

RESUMO

BACKGROUND: Glioblastoma (GBM) has a devastating median survival of only one year. Treatment includes resection, radiation therapy, and temozolomide (TMZ); however, the latter increased median survival by only 2.5 months in the pivotal study. A desperate need remains to find an effective treatment. METHODS: We used the Connectivity Map (CMap) bioinformatic tool to identify candidates for repurposing based on GBM's specific genetic profile. CMap identified histone deacetylase (HDAC) inhibitors as top candidates. In addition, Gene Expression Profiling Interactive Analysis (GEPIA) identified HDAC1 and HDAC2 as the most upregulated and HDAC11 as the most downregulated HDACs. We selected PCI-24781/abexinostat due to its specificity against HDAC1 and HDAC2, but not HDAC11, and blood-brain barrier permeability. RESULTS: We tested PCI-24781 using in vitro human and mouse GBM syngeneic cell lines, an in vivo murine orthograft, and a genetically engineered mouse model for GBM (PEPG - PTENflox/+; EGFRvIII+; p16Flox/- & GFAP Cre +). PCI-24781 significantly inhibited tumor growth and downregulated DNA repair machinery (BRCA1, CHK1, RAD51, and O6-methylguanine-DNA- methyltransferase (MGMT)), increasing DNA double-strand breaks and causing apoptosis in the GBM cell lines, including an MGMT expressing cell line in vitro. Further, PCI-24781 decreased tumor burden in a PEPG GBM mouse model. Notably, TMZ + PCI increased survival in orthotopic murine models compared to TMZ + vorinostat, a pan-HDAC inhibitor that proved unsuccessful in clinical trials. CONCLUSION: PCI-24781 is a novel GBM-signature specific HDAC inhibitor that works synergistically with TMZ to enhance TMZ efficacy and improve GBM survival. These promising MGMT-agnostic results warrant clinical evaluation.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Temozolomida/farmacologia , Animais , Antineoplásicos Alquilantes/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular , Biologia Computacional/métodos , Quebras de DNA , Gerenciamento Clínico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Glioblastoma/diagnóstico , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Camundongos Transgênicos , Temozolomida/uso terapêutico , Transcriptoma , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mol Oncol ; 15(7): 1866-1881, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33792183

RESUMO

Lung cancer (LC) is the leading cause of cancer-related mortality. However, the molecular mechanisms associated with the development of metastasis are poorly understood. Understanding the biology of LC metastasis is critical to unveil the molecular mechanisms for designing targeted therapies. We developed two genetically engineered LC mouse models KrasG12D/+ ; Trp53R172H/+ ; Ad-Cre (KPA) and KrasG12D/+ ; Ad-Cre (KA). Survival analysis showed significantly (P = 0.0049) shorter survival in KPA tumor-bearing mice as compared to KA, suggesting the aggressiveness of the model. Our transcriptomic data showed high expression of N-acetylgalactosaminide alpha-2, 6-sialyltransferase 1 (St6galnac-I) in KPA compared to KA tumors. ST6GalNAc-I is an O-glycosyltransferase, which catalyzes the addition of sialic acid to the initiating GalNAc residues forming sialyl Tn (STn) on glycoproteins, such as mucins. Ectopic expression of species-specific p53 mutants in the syngeneic mouse and human LC cells led to increased cell migration and high expression of ST6GalNAc-I, STn, and MUC5AC. Immunoprecipitation of MUC5AC in the ectopically expressing p53R175H cells exhibited higher affinity toward STn. In addition, ST6GalNAc-I knockout (KO) cells also showed decreased migration, possibly due to reduced glycosylation of MUC5AC as observed by low STn on the glycoprotein. Interestingly, ST6GalNAc-I KO cells injected mice developed less liver metastasis (P = 0.01) compared to controls, while colocalization of MUC5AC and STn was observed in the liver metastatic tissues of control mice. Collectively, our findings support the hypothesis that mutant p53R175H mediates ST6GalNAc-I expression, leading to the sialyation of MUC5AC, and thus contribute to LC liver metastasis.


Assuntos
Neoplasias Hepáticas , Neoplasias Pulmonares , Animais , Glicosilação , Humanos , Neoplasias Pulmonares/genética , Camundongos , Mucina-5AC/metabolismo , Ácido N-Acetilneuramínico , Sialiltransferases/genética , Sialiltransferases/metabolismo
8.
Cancers (Basel) ; 12(10)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019652

RESUMO

Brain metastasis (BrM) remains a significant cause of cancer-related mortality in epidermal growth factor receptor 2-positive (ERBB2+) breast cancer (BC) patients. We proposed here that a combination treatment of irreversible tyrosine kinase inhibitor neratinib (NER) and the c-MET inhibitor cabozantinib (CBZ) could prevent brain metastasis. To address this, we first tested the combination treatment of NER and CBZ in the brain-seeking ERBB2+ cell lines SKBrM3 and JIMT-1-BR3, and in ERBB2+ organoids that expressed the c-MET/ERBB1 axis. Next, we developed and characterized an orthotopic mouse model of spontaneous BrM and evaluated the therapeutic effect of CBZ and NER in vivo. The combination treatment of NER and CBZ significantly inhibited proliferation and migration in ERBB2+ cell lines and reduced the organoid growth in vitro. Mechanistically, the combination treatment of NER and CBZ substantially inhibited ERK activation downstream of the c-MET/ERBB1 axis. Orthotopically implanted SKBrM3+ cells formed primary tumor in the mammary fat pad and spontaneously metastasized to the brain and other distant organs. Combination treatment with NER and CBZ inhibited primary tumor growth and predominantly prevented BrM. In conclusion, the orthotopic model of spontaneous BrM is clinically relevant, and the combination therapy of NER and CBZ might be a useful approach to prevent BrM in BC.

9.
Gastroenterology ; 159(5): 1898-1915.e6, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32781084

RESUMO

BACKGROUND & AIMS: It is not clear how pancreatic cancer stem cells (CSCs) are regulated, resulting in ineffective treatments for pancreatic cancer. PAF1, a RNA polymerase II-associated factor 1 complex (PAF1C) component, maintains pluripotency of stem cells, by unclear mechanisms, and is a marker of CSCs. We investigated mechanisms by which PAF1 maintains CSCs and contributes to development of pancreatic tumors. METHODS: Pancreatic cancer cell lines were engineered to knockdown PAF1 using inducible small hairpin RNAs. These cells were grown as orthotopic tumors in athymic nude mice and PAF1 knockdown was induced by administration of doxycycline in drinking water. Tumor growth and metastasis were monitored via IVIS imaging. CSCs were isolated from pancreatic cancer cell populations using flow cytometry and characterized by tumor sphere formation, tumor formation in nude mice, and expression of CSC markers. Isolated CSCs were depleted of PAF1 using the CRISPR/Cas9 system. PAF1-regulated genes in CSCs were identified via RNA-seq and PCR array analyses of cells with PAF1 knockdown. Proteins that interact with PAF1 in CSCs were identified by immunoprecipitations and mass spectrometry. We performed chromatin immunoprecipitation sequencing of CSCs to confirm the binding of the PAF1 sub-complex to target genes. RESULTS: Pancreatic cancer cells depleted of PAF1 formed smaller and fewer tumor spheres in culture and orthotopic tumors and metastases in mice. Isolated CSCs depleted of PAF1 downregulated markers of self-renewal (NANOG, SOX9, and ß-CATENIN), of CSCs (CD44v6, and ALDH1), and the metastasis-associated gene signature, compared to CSCs without knockdown of PAF1. The role of PAF1 in CSC maintenance was independent of its RNA polymerase II-associated factor 1 complex component identity. We identified DDX3 and PHF5A as proteins that interact with PAF1 in CSCs and demonstrated that the PAF1-PHF5A-DDX3 sub-complex bound to the promoter region of Nanog, whose product regulates genes that control stemness. Levels of the PAF1-DDX3 and PAF1-PHF5A were increased and co-localized in human pancreatic tumor specimens, human pancreatic tumor-derived organoids, and organoids derived from tumors of KPC mice, compared with controls. Binding of DDX3 and PAF1 to the Nanog promoter, and the self-renewal capacity of CSCs, were decreased in cells incubated with the DDX3 inhibitor RK-33. CSCs depleted of PAF1 downregulated genes that regulate stem cell features (Flot2, Taz, Epcam, Erbb2, Foxp1, Abcc5, Ddr1, Muc1, Pecam1, Notch3, Aldh1a3, Foxa2, Plat, and Lif). CONCLUSIONS: In pancreatic CSCs, PAF1 interacts with DDX3 and PHF5A to regulate expression of NANOG and other genes that regulate stemness. Knockdown of PAF1 reduces the ability of orthotopic pancreatic tumors to develop and progress in mice and their numbers of CSCs. Strategies to target the PAF1-PHF5A-DDX3 complex might be developed to slow or inhibit progression of pancreatic cancer.


Assuntos
RNA Helicases DEAD-box/metabolismo , Células-Tronco Neoplásicas/enzimologia , Neoplasias Pancreáticas/enzimologia , Proteínas de Ligação a RNA/metabolismo , Células da Side Population/enzimologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Autorrenovação Celular , RNA Helicases DEAD-box/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Nus , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fenótipo , Proteínas de Ligação a RNA/genética , Células da Side Population/patologia , Transdução de Sinais , Transativadores/genética , Fatores de Transcrição/genética , Carga Tumoral
10.
Brain Pathol ; 30(4): 732-745, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32145124

RESUMO

Of the four primary subgroups of medulloblastoma, the most frequent cytogenetic abnormality, i17q, distinguishes Groups 3 and 4 which carry the highest mortality; haploinsufficiency of 17p13.3 is a marker for particularly poor prognosis. At the terminal end of this locus lies miR-1253, a brain-enriched microRNA that regulates bone morphogenic proteins during cerebellar development. We hypothesized miR-1253 confers novel tumor-suppressive properties in medulloblastoma. Using two different cohorts of medulloblastoma samples, we first studied the expression and methylation profiles of miR-1253. We then explored the anti-tumorigenic properties of miR-1253, in parallel with a biochemical analysis of apoptosis and proliferation, and isolated oncogenic targets using high-throughput screening. Deregulation of miR-1253 expression was noted, both in medulloblastoma clinical samples and cell lines, by epigenetic silencing via hypermethylation; specific de-methylation of miR-1253 not only resulted in rapid recovery of expression but also a sharp decline in tumor cell proliferation and target gene expression. Expression restoration also led to a reduction in tumor cell virulence, concomitant with activation of apoptotic pathways, cell cycle arrest and reduction of markers of proliferation. We identified two oncogenic targets of miR-1253, CDK6 and CD276, whose silencing replicated the negative trophic effects of miR-1253. These data reveal novel tumor-suppressive properties for miR-1253, i.e., (i) loss of expression via epigenetic silencing; (ii) negative trophic effects on tumor aggressiveness; and (iii) downregulation of oncogenic targets.


Assuntos
Antígenos B7/genética , Neoplasias Cerebelares/patologia , Quinase 6 Dependente de Ciclina/genética , Regulação Neoplásica da Expressão Gênica/genética , Meduloblastoma/patologia , MicroRNAs/genética , Proliferação de Células/genética , Neoplasias Cerebelares/genética , Humanos , Meduloblastoma/genética
11.
BMC Cancer ; 19(1): 1056, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694585

RESUMO

BACKGROUND: MYC amplification or overexpression is common in Group 3 medulloblastoma and is associated with the worst prognosis. Recently, protein arginine methyl transferase (PRMT) 5 expression has been closely associated with aberrant MYC function in various cancers, including brain tumors such as glioblastoma. However, the role of PRMT5 and its association with MYC in medulloblastoma have not been explored. Here, we report the role of PRMT5 as a novel regulator of MYC and implicate PRMT5 as a potential therapeutic target in MYC-driven medulloblastoma. METHODS: Expression and association between PRMT5 and MYC in primary medulloblastoma tumors were investigated using publicly available databases. Expression levels of PRMT5 protein were also examined using medulloblastoma cell lines and primary tumors by western blotting and immunohistochemistry, respectively. Using MYC-driven medulloblastoma cells, we examined the physical interaction between PRMT5 and MYC by co-immunoprecipitation and co-localization experiments. To determine the functional role of PRMT5 in MYC-driven medulloblastoma, PRMT5 was knocked-down in MYC-amplified cells using siRNA and the consequences of knockdown on cell growth and MYC expression/stability were investigated. In vitro therapeutic potential of PRMT5 in medulloblastoma was also evaluated using a small molecule inhibitor, EPZ015666. RESULTS: We observed overexpression of PRMT5 in MYC-driven primary medulloblastoma tumors and cell lines compared to non-MYC medulloblastoma tumors and adjacent normal tissues. We also found that high expression of PRMT5 is inversely correlated with patient survival. Knockdown of PRMT5 using siRNA in MYC-driven medulloblastoma cells significantly decreased cell growth and MYC expression. Mechanistically, we found that PRMT5 physically associated with MYC by direct protein-protein interaction. In addition, a cycloheximide chase experiment showed that PRMT5 post-translationally regulated MYC stability. In the context of therapeutics, we observed dose-dependent efficacy of PRMT5 inhibitor EPZ015666 in suppressing cell growth and inducing apoptosis in MYC-driven medulloblastoma cells. Further, the expression levels of PRMT5 and MYC protein were downregulated upon EPZ015666 treatment. We also observed a superior efficacy of this inhibitor against MYC-amplified medulloblastoma cells compared to non-MYC-amplified medulloblastoma cells, indicating specificity. CONCLUSION: Our results reveal the regulation of MYC oncoprotein by PRMT5 and suggest that targeting PRMT5 could be a potential therapeutic strategy for MYC-driven medulloblastoma.


Assuntos
Neoplasias Cerebelares/metabolismo , Meduloblastoma/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Humanos , Isoquinolinas/farmacologia , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Ligação Proteica , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Proteínas Proto-Oncogênicas c-myc/genética , Pirimidinas/farmacologia , Interferência de RNA , Análise de Sobrevida
12.
Gastroenterology ; 155(5): 1608-1624, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30086262

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinomas (PDACs) produce higher levels of truncated O-glycan structures (such as Tn and sTn) than normal pancreata. Dysregulated activity of core 1 synthase glycoprotein-N-acetylgalactosamine 3-ß-galactosyltransferase 1 (C1GALT1) leads to increased expression of these truncated O-glycans. We investigated whether and how truncated O-glycans contributes to the development and progression of PDAC using mice with disruption of C1galt1. METHODS: We crossed C1galt1 floxed mice (C1galt1loxP/loxP) with KrasG12D/+; Trp53R172H/+; Pdx1-Cre (KPC) mice to create KPCC mice. Growth and progression of pancreatic tumors were compared between KPC and KPCC mice; pancreatic tissues were collected and analyzed by immunohistochemistry; immunofluorescence; and Sirius red, alcian blue, and lectin staining. We used the CRISPR/Cas9 system to disrupt C1GALT1 in human PDAC cells (T3M4 and CD18/HPAF) and levels of O-glycans were analyzed by lectin blotting, mass spectrometry, and lectin pulldown assay. Orthotopic studies and RNA sequencing analyses were performed with control and C1GALT1 knockout PDAC cells. C1GALT1 expression was analyzed in well-differentiated (n = 36) and poorly differentiated (n = 23) PDAC samples by immunohistochemistry. RESULTS: KPCC mice had significantly shorter survival times (median 102 days) than KPC mice (median 200 days) and developed early pancreatic intraepithelial neoplasias at 3 weeks, PDAC at 5 weeks, and metastasis at 10 weeks compared with KPC mice. Pancreatic tumors that developed in KPCC mice were more aggressive (more invasive and metastases) than those in KPC mice, had a decreased amount of stroma, and had increased production of Tn. Poorly differentiated PDAC specimens had significantly lower levels of C1GALT1 than well-differentiated PDACs. Human PDAC cells with knockout of C1GALT1 had aberrant glycosylation of MUC16 compared with control cells and increased expression of genes that regulate tumorigenesis and metastasis. CONCLUSIONS: In studies of KPC mice with disruption of C1galt1, we found that loss of C1galt1 promotes development of aggressive PDACs and increased metastasis. Knockout of C1galt1 leads to increased tumorigenicity and truncation of O-glycosylation on MUC16, which could contribute to increased aggressiveness.


Assuntos
Adenocarcinoma/etiologia , Galactosiltransferases/fisiologia , Neoplasias Pancreáticas/etiologia , Adenocarcinoma/secundário , Animais , Sistemas CRISPR-Cas , Carcinoma Ductal Pancreático , Proliferação de Células , Galactosiltransferases/genética , Glicosilação , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/patologia
13.
Biochimie ; 140: 10-19, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28552397

RESUMO

Despite great progress in understanding the activation of hepatic stellate cells (HSCs) during liver fibrosis, therapeutic approaches to inhibit HSC activation remain very limited. Recent reports highlight Yes-associated protein (Yap) and transforming growth factor-ß1 (TGF-ß1) as critical regulators of HSC activation and henceforth a compound targeting Hippo/Yap and TGF-ß1/Smad pathways would be a potential anti-fibrotic candidate. Morin, a dietary flavonoid, was earlier reported to inhibit HSC proliferation and induction of apoptosis of cultured HSCs, mainly by suppressing Wnt/ß-catenin and NF-κB signaling, but its effect on Hippo/Yap and TGF-ß1/Smad pathways was not determined. To address this concern, this study was carried out in cultured LX-2 cells and diethylnitrosamine-induced fibrotic rats. Morin activated hippo signaling through significantly increased expression of Mst1 and Lats1 with decreased expression of transcriptional effectors Yap/TAZ, thereby prevented HSC activation and also suppressed the expression of exacerbated TGF-ß/Smad signaling molecules such as TGF-ß1, p-Smad2/3, collagen-I, MMP-2, MMP-9 and TIMP-1 in cultured LX-2 and DEN induced fibrotic rats. Both the in vitro and in vivo results clearly showed that, morin by acting on Hippo/Yap and TGF-ß1/Smad pathways, ameliorated experimental liver fibrosis, indicating that morin has potential for effective treatment of liver fibrosis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Dietilnitrosamina/toxicidade , Flavonoides/farmacologia , Células Estreladas do Fígado/metabolismo , Cirrose Hepática , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Estreladas do Fígado/patologia , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Ratos , Ratos Wistar , Proteínas de Sinalização YAP
14.
Exp Cell Res ; 355(2): 124-141, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28366538

RESUMO

Recent clinical and experimental evidences strongly acclaim Yes-associated protein (Yap), a key oncogenic driver in liver carcinogenesis, as a therapeutic target. Of the known multiple schemes to inhibit Yap activity, activation of Mammalian Sterile 20-like Kinase 1 (Mst1), an upstream regulator of Yap, appears to be a promising one. In this study, we hypothesize that morin, a bioflavonoid, mediates its anti-cancer effect through the activation of Mst1/hippo signaling in liver cancer cells. To test this hypothesis, both full length Mst1 (F-Mst1) and kinase active N-terminal Mst1 (N-Mst1)-overexpressed HepG2 cells were used. Exposure of F-Mst1 overexpressed HepG2 cells to morin activated Mst1 by caspase-3 cleavage and thereby inhibited Yap nuclear translocation and fostered apoptosis. Morin suppressed NF-κB p65 and Wnt/ß-catenin signaling through Mst1 activation via cleavage and phosphorylation, leading to cell death. Annexin-V/PI staining further confirmed the induction of apoptosis in morin treated F-Mst1 overexpressed cells. The present study shows that morin targets cell survival molecules such as NF-κB p65 and ß-catenin through activation of hippo signaling. Therefore, morin could be considered as a potential anti-cancer agent against liver cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/efeitos dos fármacos , Núcleo Celular/metabolismo , Flavonoides/farmacologia , NF-kappa B/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição , Proteínas Wnt/metabolismo , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...