Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 12(7)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635142

RESUMO

Drug delivery to the brain is highly hindered by the presence of the blood-brain barrier (BBB), which prevents the entry of many potential drugs/biomolecules into the brain. One of the current strategies to achieve gene therapy for neurodegenerative diseases involves direct injection of a viral vector into the brain. There are various disadvantages of viral vectors, including limitations of cargo size and safety concerns. Nanomolecules, such as dendrimers, serve as an excellent alternative to viral delivery. In this study, as proof-of-concept, we used a surface-modified dendrimer complex and delivered large plasmids to cells in vitro and in vivo in healthy rats via intracranial injection. The dendrimers were biodegradable by chemicals found within cells and toxicity assays revealed that the modified dendrimers were much less toxic than unmodified amine-surface dendrimers. As mentioned in our previous publication, these dendrimers with appropriately modified surfaces are safe, can deliver large plasmids to the brain, and can overcome the cargo size limitations associated with viral vectors. The biocompatibility of this dendritic nanomolecule and the ability to finely tune its surface chemistry provides a gene delivery system that could facilitate future in vivo cellular reprograming and other gene therapies.

2.
J Cell Mol Med ; 23(8): 5211-5224, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31162801

RESUMO

Autophagy, including mitophagy, is critical for neuroprotection in traumatic brain injury (TBI). Transplantation of mesenchymal stem cells (MSCs) provides neuroprotection and induces autophagy by increasing anti-inflammatory cytokines, such as interleukin-10 (IL-10). To evaluate these effects of IL10 that are released by MSCs, we genetically engineered MSCs to overexpress IL10 and compared their effects to unaltered MSCs following transplantation near the site of induced TBIs in rats. Adult, male Sprague-Dawley rats were divided into four groups: Sham + vehicle, TBI + vehicle, TBI + MSCs-IL-10 and TBI + MSCs-GFP. Thirty-six hours post-TBI, the first two groups received vehicle (Hanks balance salt solution), whereas last two groups were transplanted with MSCs-IL-10 or MSCs-GFP. Three weeks after transplantation, biomarkers for neurodegenerative changes, autophagy, mitophagy, cell death and survival markers were measured. We observed a significant increase in the number of dead cells in the cortex and hippocampus in TBI rats, whereas transplantation of MSCs-IL-10 significantly reduced their numbers in comparison to MSCs alone. MSCs-IL-10 rats had increased autophagy, mitophagy and cell survival markers, along with decreased markers for cell death and neuroinflammation. These results suggest that transplantation of MSCs-IL-10 may be an effective strategy to protect against TBI-induced neuronal damage.


Assuntos
Autofagia/genética , Lesões Encefálicas Traumáticas/terapia , Interleucina-10/genética , Transplante de Células-Tronco Mesenquimais , Animais , Biomarcadores Tumorais/genética , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/fisiopatologia , Sobrevivência Celular/genética , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Inflamação/genética , Inflamação/patologia , Células-Tronco Mesenquimais/metabolismo , Mitofagia/genética , Neurônios/metabolismo , Neurônios/patologia , Neuroproteção/genética , Ratos
3.
Behav Brain Res ; 356: 1-7, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107224

RESUMO

Stroke is a leading cause of death and disability and currently only has one FDA approved pharmacological treatment (tissue plasminogen activator), which is only administered to a fraction of stroke patients due to contraindications. New treatments are desperately needed but most treatments fail in clinical trials, even after showing benefit in animal models of stroke. To increase the translatability of animal stroke research to humans, sensitive functional measures for both the acute and chronic stages in animal models of stroke are needed. The objective of this study was to determine the sensitivity of certain behavioral tasks, up to seven weeks following occlusion of the middle cerebral artery (MCAo) in rats. A battery of behavioral tasks, including rotorod, cylinder, and limb-placement, was conducted weekly for seven weeks. Also, a behavioral flexibility operant task was introduced at the end of the study to measure cognitive deficits. All functional outcome measures showed significant differences between stroke and control groups, indicating that these tasks are sensitive enough to detect deficits in a long-term MCAo study in rats. This provides useful information for those trying to increase translatability in their own stroke research by providing long-term sensitive testing paradigms in a relevant stroke model.


Assuntos
Comportamento Animal/fisiologia , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/fisiopatologia , Animais , Escala de Avaliação Comportamental , Isquemia Encefálica/fisiopatologia , Cognição/fisiologia , Condicionamento Operante/fisiologia , Modelos Animais de Doenças , Masculino , Atividade Motora/fisiologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo
4.
Molecules ; 23(2)2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29414872

RESUMO

Suramin is a trypan blue analogon originally developed to treat protozoan infections, which was found to have diverse antitumor effects. One of the most severe side effects in clinical trials was the development of a peripheral sensory-motor polyneuropathy. In this study, we aimed to investigate suramin-induced neuropathy with a focus on calcium (Ca2+) homeostasis as a potential pathomechanism. Adult C57Bl/6 mice treated with a single injection of 250 mg/kg bodyweight suramin developed locomotor and sensory deficits, which were confirmed by electrophysiological measurements showing a predominantly sensory axonal-demyelinating polyneuropathy. In a next step, we used cultured dorsal root ganglia neurons (DRGN) as an in vitro cell model to further investigate underlying pathomechanisms. Cell viability of DRGN was significantly decreased after 24-hour suramin treatment with a calculated IC50 of 283 µM. We detected a suramin-induced Ca2+ influx into DRGN from the extracellular space, which could be reduced with the voltage-gated calcium channel (VGCC) inhibitor nimodipine. Co-incubation of suramin and nimodipine partially improved cell viability of DRGN after suramin exposure. In summary, we describe suramin-induced neurotoxic effects on DRGN as well as potentially neuroprotective agents targeting intracellular Ca2+ dyshomeostasis.


Assuntos
Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/efeitos adversos , Suramina/efeitos adversos , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Gânglios Espinais/citologia , Camundongos , Modelos Animais , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Polineuropatias/tratamento farmacológico , Polineuropatias/etiologia , Polineuropatias/fisiopatologia
5.
Int J Mol Sci ; 18(3)2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28335421

RESUMO

Drug delivery into the central nervous system (CNS) is challenging due to the blood-brain barrier (BBB) and drug delivery into the brain overcoming the BBB can be achieved using nanoparticles such as dendrimers. The conventional cationic dendrimers used are highly toxic. Therefore, the present study investigates the role of novel mixed surface dendrimers, which have potentially less toxicity and can cross the BBB when administered through the carotid artery in mice. In vitro experiments investigated the uptake of amine dendrimers (G1-NH2 and G4-NH2) and novel dendrimers (G1-90/10 and G4-90/10) by primary cortical cultures. In vivo experiments involved transplantation of G4-90/10 into mice through (1) invasive intracranial injections into the striatum; and (2) less invasive carotid injections. The animals were sacrificed 24-h and 1-week post-transplantations and their brains were analyzed. In vivo experiments proved that the G4-90/10 can cross the BBB when injected through the carotid artery and localize within neurons and glial cells. The dendrimers were found to migrate through the corpus callosum 1-week post intracranial injection. Immunohistochemistry showed that the migrating cells are the dendrimer-infected glial cells. Overall, our results suggest that poly-amidoamine (PAMAM) dendrimers may be used as a minimally invasive means to deliver biomolecules for treating neurological diseases or disorders.


Assuntos
Barreira Hematoencefálica/metabolismo , Dendrímeros/farmacocinética , Animais , Artérias Carótidas/metabolismo , Células Cultivadas , Dendrímeros/administração & dosagem , Dendrímeros/síntese química , Injeções Intra-Arteriais , Camundongos , Camundongos Endogâmicos C57BL
6.
Sci Rep ; 4: 6370, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25231679

RESUMO

Polyneuropathy is a frequent and potentially severe side effect of clinical tumor chemotherapy. The goal of this study was to characterize paclitaxel-, cisplatin-, vincristine- and bortezomib-induced neuropathy in C57BL/6 mice with a comparative approach. The phenotype of the animals was evaluated at four time points with behavioral and electrophysiological tests, followed by histology. Treatment protocols used in this study were well tolerated and induced a sensory and predominantly axonal polyneuropathy. Behavioral testing revealed normal motor coordination, whereas all mice receiving verum treatment developed mechanical allodynia and distinct gait alterations. Electrophysiological evaluation showed a significant decrease of the caudal sensory nerve action potential amplitude for all cytostatic agents and a moderate reduction of nerve conduction velocity for cisplatin and paclitaxel. This finding was confirmed by histological analysis of the sciatic nerve which showed predominantly axonal damage: Paclitaxel and vincristine affected mostly large myelinated fibers, bortezomib small myelinated fibers and cisplatin damaged all types of myelinated fibers to a similar degree. Neuropathic symptoms developed faster in paclitaxel and vincristine treated animals compared to cisplatin and bortezomib treatment. The animal models in this study can be used to elucidate pathomechanisms underlying chemotherapy-induced polyneuropathy and for the development of novel therapeutic and preventative strategies.


Assuntos
Comportamento Animal/efeitos dos fármacos , Ácidos Borônicos/toxicidade , Cisplatino/toxicidade , Hiperalgesia/patologia , Paclitaxel/toxicidade , Polineuropatias/patologia , Pirazinas/toxicidade , Vincristina/toxicidade , Potenciais de Ação , Animais , Antineoplásicos/toxicidade , Antineoplásicos Fitogênicos/toxicidade , Bortezomib , Eletrofisiologia , Marcha/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polineuropatias/induzido quimicamente
7.
Restor Neurol Neurosci ; 31(4): 431-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23531530

RESUMO

PURPOSE: The effectiveness of embryonic stem cell (eSC) therapy has been explored in many models of neurological disease and several research groups have shown that eSC treatment leads to improved outcomes in pre-clinical models of traumatic brain injury (TBI). Though functional recovery occurs, few surviving eSCs appear to develop neuronal characteristics; instead the majority of the surviving eSC express glial phenotypes. Additionally, researchers have shown that enriching the post-surgical environment of the subject promotes functional recovery following TBI. The purpose of the current project was to determine if post-surgical environmental enrichment (EE) impacts the survival, migration, and integration of eSCs in a rodent model of TBI and if the presence of these cells lead to improved outcomes. METHODS: In the current study, the medial frontal cortex (MFC) of rats was injured using a controlled cortical impact (CCI) device. Immediately following injury the rats were placed into either EE or standard environment (SE) housing and then seven days post-injury rats received either murine cortical eSC or media. Behavioral testing consisted of the Morris water maze (MWM), Barnes Maze (BM), and Rotarod tasks (RR). RESULTS: On the MWM task, TBI/eSC/EE animals performed as well as the Sham/SE and Sham/EE groups. The TBI/eSC/SE, TBI/Media/EE, and TBI/Media/SE groups were impaired compared to the controls. By the end of training on the BM there were no differences between the Sham, TBI/Media/EE, and TBI/eSC/EE groups. On the RR task all animals placed in the EE performed equally well and significantly better than their SE housed counterparts. By the end of training on the RR task, the TBI/eSC/EE group performed as well as the sham counterparts, and though not significant they also surpassed the performance of the injured animals that received enrichment or eSC treatment alone. CONCLUSIONS: Combing therapeutic strategies with enriching the post-injury environment is likely to be an important addition to determining the efficacy of pre-clinical therapies.


Assuntos
Lesões Encefálicas/enfermagem , Lesões Encefálicas/cirurgia , Meio Ambiente , Recuperação de Função Fisiológica/fisiologia , Transplante de Células-Tronco/métodos , Análise de Variância , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Modelos Animais de Doenças , Reação de Fuga/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Aprendizagem em Labirinto , Camundongos , Proteínas dos Microfilamentos/metabolismo , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Long-Evans , Tempo de Reação , Teste de Desempenho do Rota-Rod , Fatores de Tempo
8.
J Neurosci Methods ; 213(2): 179-87, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23291083

RESUMO

Evaluation of functional outcome over the course of several weeks after ischemia is a key component in improving the clinical relevance of experimental stroke studies. Using a battery of behavioral tests, we characterized functional outcome in mice over 4 weeks following 30min of proximal middle cerebral artery occlusion (MCAo). We evaluated rotarod, chimney, pole and cylinder tests to assess short term functional deficits in a transient stroke model which induces infarcts mainly in the striatum. The corner test, adhesive removal test, cylinder test, catwalk, paw preference test and novel tests of rotation were evaluated for long-term functional outcome. Rotarod detected deficits within the first week and pole test was reliable up to intermediate time points after MCAo. Corner test, adhesive removal test, catwalk and paw preference test detected deficits for up to 4 weeks, as did the novel corner rotation and bowl tests. Chimney and cylinder test did not prove useful in our model of mild stroke. In summary, we established the pole test and rotarod as useful tools to evaluate sensory motor deficits early after mild stroke, and corner test and adhesive removal test at later time-points. Alternatively, corner rotation may be a suitable test of long-term function. Test batteries may be further complemented by catwalk and paw preference test for clinically relevant deficits. There was no correlation of behavioral outcome with lesion size at 28 days, and determining whether these tests are useful for detecting a potential benefit of neuroprotective or regenerative therapies requires further testing.


Assuntos
Isquemia Encefálica/complicações , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Desempenho Psicomotor/fisiologia , Recuperação de Função Fisiológica , Animais , Comportamento Animal , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...