Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 1: 15015, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-27246882

RESUMO

In Arabidopsis the plasma membrane nitrate transceptor (transporter/receptor) NRT1.1 governs many physiological and developmental responses to nitrate. Alongside facilitating nitrate uptake, NRT1.1 regulates the expression levels of many nitrate assimilation pathway genes, modulates root system architecture, relieves seed dormancy and protects plants from ammonium toxicity. Here, we assess the functional and phenotypic consequences of point mutations in two key residues of NRT1.1 (P492 and T101). We show that the point mutations differentially affect several of the NRT1.1-dependent responses to nitrate, namely the repression of lateral root development at low nitrate concentrations, and the short-term upregulation of the nitrate-uptake gene NRT2.1, and its longer-term downregulation, at high nitrate concentrations. We also show that these mutations have differential effects on genome-wide gene expression. Our findings indicate that NRT1.1 activates four separate signalling mechanisms, which have independent structural bases in the protein. In particular, we present evidence to suggest that the phosphorylated and non-phosphorylated forms of NRT1.1 at T101 have distinct signalling functions, and that the nitrate-dependent regulation of root development depends on the phosphorylated form. Our findings add to the evidence that NRT1.1 is able to trigger independent signalling pathways in Arabidopsis in response to different environmental conditions.

2.
Theor Appl Genet ; 107(4): 751-6, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12861362

RESUMO

Chlorogenic acids (CGA) are involved in the bitterness of coffee due to their decomposition in phenolic compounds during roasting. CGA mainly include caffeoyl-quinic acids (CQA), dicaffeoyl-quinic acids (diCQA) and feruloyl-quinic acids (FQA), while CQA and diCQA constitute CGA sensu stricto (CGA s.s.). In the two cultivated species Coffea canephora and Coffea arabica, CGA s.s. represents 88% and 95% of total CGA, respectively. Among all enzymes involved in CGA biosynthesis, caffeoyl-coenzyme A 3-O-methyltransferase (CCoAOMT) is not directly involved in the CGA s.s. pathway, but rather in an upstream branch leading to FQA through feruloyl-CoA. We describe how a partial cDNA corresponding to a CCoAOMT encoding gene was obtained and sequenced. Specific primers were designed and used for studying polymorphism and locating the corresponding gene on a genetic map obtained from an interspecific backcross between Coffea liberica var. Dewevrei and Coffea pseudozanguebariae. Offspring of this backcross were also evaluated for the chlorogenic acid content in their green beans. A 10% decrease was observed in backcross progenies that possess one C. pseudozanguebariae allele of the CCoAOMT gene. This suggests that CGA s.s. accumulation is dependent on the CCoAMT allele present and consequently on the activity of the encoded isoform, whereby CGA accumulation increases as the isoform activity decreases. Possible implications in coffee breeding are discussed.


Assuntos
Ácido Clorogênico/metabolismo , Coffea/genética , Coffea/metabolismo , Genes de Plantas , Metiltransferases/genética , Alelos , Sequência de Bases , Cruzamento , Mapeamento Cromossômico , Cruzamentos Genéticos , DNA Complementar/genética , DNA de Plantas/genética , Modelos Biológicos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...