Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(10): e0140036, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26474164

RESUMO

Diamond Blackfan Anemia (DBA) is a rare, congenital erythrocyte aplasia that is usually caused by haploinsufficiency of ribosomal proteins due to diverse mutations in one of several ribosomal genes. A striking feature of this disease is that a range of different mutations in ribosomal proteins results in similar disease phenotypes primarily characterized by erythrocyte abnormalities and macrocytic anemia, while most other cell types in the body are minimally affected. Previously, we analyzed the erythrocyte membrane proteomes of several DBA patients and identified several proteins that are not typically associated with this cell type and that suggested inflammatory mechanisms contribute to the pathogenesis of DBA. In this study, we evaluated the erythrocyte cytosolic proteome of DBA patients through in-depth analysis of hemoglobin-depleted erythrocyte cytosols. Simple, reproducible, hemoglobin depletion using nickel columns enabled in-depth analysis of over 1000 cytosolic erythrocyte proteins with only moderate total analysis time per proteome. Label-free quantitation and statistical analysis identified 29 proteins with significantly altered abundance levels in DBA patients compared to matched healthy control donors. Proteins that were significantly increased in DBA erythrocyte cytoplasms included three proteasome subunit beta proteins that make up the immunoproteasome and proteins induced by interferon-γ such as n-myc interactor and interferon-induced 35 kDa protein [NMI and IFI35 respectively]. Pathway analysis confirmed the presence of an inflammatory signature in erythrocytes of DBA patients and predicted key upstream regulators including mitogen activated kinase 1, interferon-γ, tumor suppressor p53, and tumor necrosis factor. These results show that erythrocytes in DBA patients are intrinsically different from those in healthy controls which may be due to an inflammatory response resulting from the inherent molecular defect of ribosomal protein haploinsufficiency or changes in the bone marrow microenvironment that leads to red cell aplasia in DBA patients.


Assuntos
Anemia de Diamond-Blackfan/sangue , Citosol/metabolismo , Eritrócitos/metabolismo , Proteoma/metabolismo , Adolescente , Adulto , Feminino , Humanos , Inflamação/sangue , Masculino
2.
J Proteomics ; 128: 298-305, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26271157

RESUMO

Erythrocyte shape and membrane integrity is imparted by the membrane skeleton, which can be isolated as a Triton X-100 insoluble structure that retains the biconcave shape of intact erythrocytes, indicating isolation of essentially intact membrane skeletons. These erythrocyte "Triton Skeletons" have been studied morphologically and biochemically, but unbiased proteome analysis of this substructure of the membrane has not been reported. In this study, different extraction buffers and in-depth proteome analyses were used to more fully define the protein composition of this functionally critical macromolecular complex. As expected, the major, well-characterized membrane skeleton proteins and their associated membrane anchors were recovered in good yield. But surprisingly, a substantial number of additional proteins that are not considered in erythrocyte membrane skeleton models were recovered in high yields, including myosin-9, lipid raft proteins (stomatin, flotillin1 and 2), multiple chaperone proteins (HSPs, protein disulfide isomerase and calnexin), and several other proteins. These results show that the membrane skeleton is substantially more complex than previous biochemical studies indicated, and it apparently has localized regions with unique protein compositions and functions. This comprehensive catalog of the membrane skeleton should lead to new insights into erythrocyte membrane biology and pathogenic mutations that perturb membrane stability. Biological significance Current models of erythrocyte membranes describe fairly simple homogenous structures that are incomplete. Proteome analysis of the erythrocyte membrane skeleton shows that it is quite complex and includes a substantial number of proteins whose roles and locations in the membrane are not well defined. Further elucidation of interactions involving these proteins and definition of microdomains in the membrane that contain these proteins should yield novel insights into how the membrane skeleton produces the normal biconcave erythrocyte shape and how it is perturbed in pathological conditions that destabilize the membrane.


Assuntos
Membrana Eritrocítica/química , Microdomínios da Membrana/química , Proteínas de Membrana/química , Octoxinol/química , Proteoma/análise , Proteoma/química , Células Cultivadas , Humanos , Solubilidade
3.
PLoS One ; 9(1): e85504, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24454878

RESUMO

Diamond Blackfan Anemia (DBA) is a congenital anemia usually caused by diverse mutations in ribosomal proteins. Although the genetics of DBA are well characterized, the mechanisms that lead to macrocytic anemia remain unclear. We systematically analyzed the proteomes of red blood cell membranes from multiple DBA patients to determine whether abnormalities in protein translation or erythropoiesis contribute to the observed macrocytosis or alterations in the mature red blood cell membrane. In depth proteome analysis of red cell membranes enabled highly reproducible identification and quantitative comparisons of 1100 or more proteins. These comparisons revealed clear differences between red cell membrane proteomes in DBA patients and healthy controls that were consistent across DBA patients with different ribosomal gene mutations. Proteins exhibiting changes in abundance included those known to be increased in DBA such as fetal hemoglobin and a number of proteins not normally found in mature red cell membranes, including proteins involved in the major histocompatibility complex class I pathway. Most striking was the presence of dysferlin in the red blood cell membranes of DBA patients but absent in healthy controls. Immunoblot validation using red cell membranes isolated from additional DBA patients and healthy controls confirmed a distinct membrane protein signature specific to patients with DBA.


Assuntos
Anemia de Diamond-Blackfan/sangue , Anemia de Diamond-Blackfan/metabolismo , Membrana Eritrocítica/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Adolescente , Adulto , Criança , Pré-Escolar , Disferlina , Feminino , Humanos , Masculino , Proteômica , Reprodutibilidade dos Testes , Adulto Jovem
4.
J Proteomics ; 76 Spec No.: 194-202, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22954596

RESUMO

Red blood cells have been extensively studied but many questions regarding membrane properties and pathophysiology remain unanswered. Proteome analysis of red cell membranes is complicated by a very wide dynamic range of protein concentrations as well as the presence of proteins that are very large, very hydrophobic, or heterogeneously glycosylated. This study investigated the removal of other blood cell types, red cell membrane extraction, differing degrees of fractionation using 1-D SDS gels, and label-free quantitative methods to determine optimized conditions for proteomic comparisons of clinical blood samples. The results showed that fractionation of red cell membranes on 1-D SDS gels was more efficient than low-ionic-strength extractions followed by 1-D gel fractionation. When gel lanes were sliced into 30 uniform slices, a good depth of analysis that included the identification of most well-characterized, low-abundance red cell membrane proteins including those present at 500 to 10,000 copies per cell was obtained. Furthermore, the size separation enabled detection of changes due to proteolysis or in vivo protein crosslinking. A combination of Rosetta Elucidator quantitation and subsequent statistical analysis enabled the robust detection of protein differences that could be used to address unresolved questions in red cell disorders. This article is part of a Special Issue entitled: Integrated omics.


Assuntos
Membrana Eritrocítica/metabolismo , Eritrócitos Anormais/metabolismo , Doenças Hematológicas/metabolismo , Proteínas de Membrana/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Membrana Eritrocítica/patologia , Eritrócitos Anormais/patologia , Feminino , Doenças Hematológicas/patologia , Humanos , Masculino
5.
Org Lett ; 13(10): 2654-7, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21510617

RESUMO

Intermolecular interactions involving hydrogen bonds are responsible for catalysis and recognition. Traditional methods used to study hydrogen-bonding interactions are generally limited to relatively large volumes and high substrate concentrations. Backscattering Interferometry (BSI) provides a microfluidic platform to study these interactions in nonaqueous media at micromolar to nanomolar concentrations in picoliter volumes by monitoring changes in the refractive index.


Assuntos
Microfluídica , Solventes/química , Ligação de Hidrogênio , Interferometria/métodos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...