Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e25417, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420388

RESUMO

Carbon dots (CDs) are promising photothermal nanoparticles that can be utilized in environmental treatments. They exhibit favorable physicochemical properties, including low toxicity, physical and chemical stability, photo-dependant reversible behaviour, and environmentally friendly synthesis using benign building blocks. Here, we synthesized innovative CDs/polylactic acid (PLA) electrospun composite membranes for evaluating the removal of hydrophobic compounds like long-chain hydrocarbons or oils in biphasic mixtures with water. The ultimate goal was to develop innovative and sustainable solar-heated oil absorbents. Specifically, we fabricated PLA membranes with varying CD contents, characterized their morphology, thermal, and mechanical properties, and assessed the environmental impact of membrane production according to ISO 14040 and 14044 standards in a preliminary "cradle-to-gate" life cycle assessment study. Solar radiation experiments demonstrated that the CDs/PLA composites exhibited greater uptake of hydrophobic compounds compared to pure PLA membranes, ascribable to the CDs-induced photothermal effect. The adsorption and regeneration capacity of the new CDs/PLA membrane was demonstrated through multiple uptake/release cycles. Ecotoxicity analyses confirmed the safety profile of the new adsorbent system towards freshwater microalgae, further emphasizing its potential as an environmentally friendly solution for the removal of hydrophobic compounds in water treatment processes.

2.
Small ; 18(1): e2104946, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755446

RESUMO

The removal of toxic and carcinogenic polycyclic aromatic hydrocarbons (PAHs) from water is one of the most intractable environmental problems nowadays, because of their resistance to remediation. This work introduces a highly efficient, regenerable membrane for the removal of PAHs from water, featuring excellent filter performance and pH-driven release, thanks to the integration of a cavitand receptor in electrospun polyacrylonitrile (PAN) fibers. The role of the cavitand receptor is to act as molecular gripper for the uptake/release of PAHs. To this purpose, the deep cavity cavitand BenzoQxCav is designed and synthetized and its molecular structure is elucidated via X-Ray diffraction. The removal efficiency of the new adsorbent material toward the 16 priority PAHs is demonstrated via GC-MS analyses at ng L-1 concentration. A removal efficiency in the 32%, to 99% range is obtained. The regeneration of the membrane is performed by exploiting the pH-driven conformational switching of the cavitand between the vase form, where the PAHs uptake takes place, to the kite one, where the PAHs release occurs. The absorbance and regeneration capability of the membrane are successfully tested in four uptake/release cycles and the morphological stability.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Éteres Cíclicos , Hidrocarbonetos Policíclicos Aromáticos/análise , Resorcinóis , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...