Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893104

RESUMO

The impact of tyrosine kinase inhibitors (TKIs) on multidrug resistance (MDR) in non-small cell lung carcinoma (NSCLC) is a critical aspect of cancer therapy. While TKIs effectively target specific signaling pathways of cancer cells, they can also act as substrates for ABC transporters, potentially triggering MDR. The aim of our study was to evaluate the response of 17 patient-derived NSCLC cultures to 10 commonly prescribed TKIs and to correlate these responses with patient mutational profiles. Using an ex vivo immunofluorescence assay, we analyzed the expression of the MDR markers ABCB1, ABCC1, and ABCG2, and correlated these data with the genetic profiles of patients for a functional diagnostic approach. NSCLC cultures responded differently to TKIs, with erlotinib showing good efficacy regardless of mutation burden or EGFR status. However, the modulation of MDR mechanisms by erlotinib, such as increased ABCG2 expression, highlights the challenges associated with erlotinib treatment. Other TKIs showed limited efficacy, highlighting the variability of response in NSCLC. Genetic alterations in signaling pathways associated with drug resistance and sensitivity, including TP53 mutations, likely contributed to the variable responses to TKIs. The relationships between ABC transporter expression, gene alterations, and response to TKIs did not show consistent patterns. Our results suggest that in addition to mutational status, performing functional sensitivity screening is critical for identifying appropriate treatment strategies with TKIs. These results underscore the importance of considering drug sensitivity, off-target effects, MDR risks, and patient-specific genetic profiles when optimizing NSCLC treatment and highlight the potential for personalized approaches, especially in early stages.

2.
Medicina (Kaunas) ; 60(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38929559

RESUMO

Background and Objectives: Hyperprolactinemia, as a potential side-effect of some antipsychotic medications, is associated with decreased bone density and an increased risk of fractures. This study investigates whether calcium and vitamin D supplementation affects prolactin receptor (Prlr) gene expression in the duodenum, vertebrae, and kidneys of female rats with sulpiride-induced hyperprolactinemia. Materials and Methods: Twenty-one-week-old female Wistar rats were assigned to three groups: Group S consisted of ten rats who received sulpiride injections (10 mg/kg) twice daily for 6 weeks; Group D (10 rats) received daily supplementation of 50 mg calcium and 500 IU vitamin D along with sulpiride for the last 3 weeks; and Group C consisting of seven age-matched nulliparous rats serving as a control group. Real-time PCR was used to assess Prlr gene expression in the duodenum, vertebrae, and kidneys. Results: In Group S, Prlr gene expression was notably decreased in the duodenum (p < 0.01) but elevated in the vertebrae and kidneys compared to Group C. Conversely, Group D exhibited significantly increased Prlr expression in the duodenum (p < 0.01) alongside elevated expression in the vertebrae and kidneys. Conclusions: In sulpiride-induced hyperprolactinemia, decreased Prlr gene expression in the duodenum may lead to reduced intestinal calcium absorption. Consequently, prolactin may draw calcium from the skeletal system to maintain calcium balance, facilitated by increased Prlr gene expression in the vertebrae. However, vitamin D supplementation in sulpiride-induced hyperprolactinemia notably enhances Prlr gene expression in the duodenum, potentially ameliorating intestinal calcium absorption and mitigating adverse effects on bone health.


Assuntos
Cálcio , Duodeno , Hiperprolactinemia , Receptores da Prolactina , Sulpirida , Vitamina D , Animais , Feminino , Ratos , Cálcio/metabolismo , Duodeno/efeitos dos fármacos , Duodeno/metabolismo , Expressão Gênica/efeitos dos fármacos , Hiperprolactinemia/tratamento farmacológico , Hiperprolactinemia/induzido quimicamente , Ratos Wistar , Receptores da Prolactina/metabolismo , Sulpirida/farmacologia , Vitamina D/farmacologia , Vitamina D/uso terapêutico
3.
Medicina (Kaunas) ; 60(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38792970

RESUMO

Background and Objectives: During the COVID-19 pandemic, there was an increased number of hospitalized COVID-19-positive patients suffering from type 2 diabetes mellitus (T2DM). The objective of this research study was to explore factors associated with the length of hospitalization of patients with T2DM and the mild form of COVID-19. Material and Methods: This retrospective cohort study involved all patients who tested positive for COVID-19 and those who were treated in the dedicated COVID-19 department of the University Clinical Center (UCC) in Nis between 10 September 2021 and 31 December 2021. Upon admission, patients underwent blood tests for biochemical analysis, including blood count, kidney and liver function parameters (C-reactive protein (CRP), creatinine kinase, and D-dimer), and glycemia and HbA1c assessments. Additionally, all patients underwent lung radiography. Univariate and multivariate regression analyses were employed to assess the impact of specific factors on the length of hospitalization among patients with T2DM. Results: Out of a total of 549 treated COVID-19-positive patients, 124 (21.0%) had T2DM, while 470 (79.0%) did not have diabetes. Among patients with T2DM, men were significantly younger than women (60.6 ± 16.8 vs. 64.2 ± 15.3, p < 0.01). The average hospitalization length of patients with diabetes was 20.2 ± 9.6 (5 to 54 days), and it was significantly longer than for patients without diabetes, at 15.0 ± 3.4, which ranged from 3 days to 39 (t-test ≈ 5.86, p < 0.05). According to the results of the univariate regression analysis, each year of age is associated with an increase in the length of hospital stay of 0.06 days (95% CI: 0.024 to 0.128, p = 0.004). Patients who received oxygen therapy were treated for 2.8 days longer than those who did not receive oxygen treatment (95% CI: 0.687 to 4988, p = 0.010), and each one-unit increase in CRP level was associated with a 0.02-day reduction in the length of hospitalization (95% CI: 0.004 to 0.029, p = 0.008). Based on the results of the multivariate regression analysis, each year of age is associated with an increase in the length of hospitalization by 0.07 days (95% CI: 0.022 to 0.110, p = 0.003). Patients who received oxygen therapy were treated for 3.2 days longer than those who did not receive oxygen therapy (95% CI: 0.653 to 5726, p = 0.014), and each unit increase in CRP level was associated with a 0.02-day reduction in the length of hospitalization (95% CI: 0.005 to 0.028, p = 0.004). Conclusions: Based on the presented results, COVID-19-positive patients with diabetes had, on average, longer hospitalizations than COVID-19 patients without diabetes. The hospital treatment of patients with T2DM and a milder form of COVID-19 was associated with older age, the use of oxygen therapy, and elevated CRP values. Patients who received oxygen therapy were treated approximately 3 days longer than those who did not receive this therapy.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Tempo de Internação , SARS-CoV-2 , Centros de Atenção Terciária , Humanos , COVID-19/complicações , COVID-19/terapia , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Tempo de Internação/estatística & dados numéricos , Centros de Atenção Terciária/organização & administração , Idoso , Sérvia/epidemiologia , Adulto , Proteína C-Reativa/análise , Pandemias
4.
Biomed Pharmacother ; 174: 116496, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537581

RESUMO

Two novel hybrid compounds, CON1 and CON2, have been developed by combining sclareol (SC) and doxorubicin (DOX) into a single molecular entity. These hybrid compounds have a 1:1 molar ratio of covalently linked SC and DOX. They have demonstrated promising anticancer properties, especially in glioblastoma cells, and have also shown potential in treating multidrug-resistant (MDR) cancer cells that express the P-glycoprotein (P-gp) membrane transporter. CON1 and CON2 form nanoparticles, as confirmed by Zetasizer, transmission electron microscopy (TEM), and chemical modeling. TEM also showed that CON1 and CON2 can be found in glioblastoma cells, specifically in the cytoplasm, different organelles, nucleus, and nucleolus. To examine the anticancer properties, the U87 glioblastoma cell line, and its corresponding multidrug-resistant U87-TxR cell line, as well as patient-derived astrocytoma grade 3 cells (ASC), were used, while normal human lung fibroblasts were used to determine the selectivity. CON1 and CON2 exhibited better resistance and selectivity profiles than DOX, showing less cytotoxicity, as evidenced by real-time cell analysis, DNA damage determination, cell death induction, mitochondrial respiration, and mitochondrial membrane depolarization studies. Cell cycle analysis and the ß-galactosidase activity assay suggested that glioblastoma cells die by senescence following CON1 treatment. Overall, CON1 and CON2 showed great potential as they have better anticancer features than DOX. They are promising candidates for additional preclinical and clinical studies on glioblastoma.


Assuntos
Doxorrubicina , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Doxorrubicina/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Diterpenos/farmacologia , Diterpenos/química , Nanopartículas/química , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Dano ao DNA/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos
5.
Bioorg Chem ; 145: 107168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354500

RESUMO

Being aware of the need to develop more efficient therapies against cancer, herein we disclose an innovative approach for the design of selective antiproliferative agents. We have accomplished the conjugation of a coumarin fragment with lipophilic cations (triphenylphosphonium salts, guanidinium) for providing mitochondriotropic agents that simultaneously target also carbonic anhydrases IX and XII, involved in the development and progression of cancer. The new compounds prepared herein turned out to be strong inhibitors of carbonic anhydrases IX and XII of human origin (low-to-mid nM range), also endowed with high selectivity, exhibiting negligible activity towards cytosolic CA isoforms. Key interactions with the enzyme were analysed using docking and molecular dynamics simulations. Regarding their in vitro antiproliferative activities, an increase of the tether length connecting both pharmacophores led to a clear improvement in potency, reaching the submicromolar range for the lead compounds, and an outstanding selectivity towards tumour cell lines (S.I. up to >357). Cytotoxic effects were also analysed on MDR cell lines under hypoxic and normoxic conditions. Chemoresistance exhibited by phosphonium salts, and not by guanidines, against MDR cells was based on the fact that the former were found to be substrates of P-glycoprotein (P-gp), the pump responsible for extruding foreign chemicals; this situation was reversed by administrating tariquidar, a third generation P-gp inhibitor. Moreover, phosphonium salts provoked a profound depolarization of mitochondria membranes from tumour cells, thus probably compromising their oxidative metabolism. To gain insight into the mode of action of title compounds, continuous live cell microscopy was employed; interestingly, this technique revealed two different antiproliferative mechanisms for both families of mitocans. Whereas phosphonium salts had a cytostatic effect, blocking cell division, guanidines led to cell death via apoptosis.


Assuntos
Antineoplásicos , Anidrases Carbônicas , Compostos Organofosforados , Humanos , Anidrases Carbônicas/metabolismo , Sais , Relação Estrutura-Atividade , Antígenos de Neoplasias/metabolismo , Antineoplásicos/química , Cumarínicos/química , Guanidinas , Inibidores da Anidrase Carbônica/química , Estrutura Molecular
6.
Diagnostics (Basel) ; 13(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132201

RESUMO

Lung cancer remains the leading cause of cancer death globally, with non-small cell lung cancer (NSCLC) accounting for the majority of cases. Multidrug resistance (MDR), often caused by ATP-binding cassette (ABC) transporters, represents a significant obstacle in the treatment of NSCLC. While genetic profiling has an important role in personalized therapy, functional assays that measure cellular responses to drugs are gaining in importance. We developed an automated microplate-based immunofluorescence assay for the evaluation of MDR markers ABCB1, ABCC1, and ABCG2 in cells obtained from NSCLC patients through high-content imaging and image analysis, as part of a functional diagnostic approach. This assay effectively discriminated cancer from non-cancer cells within mixed cultures, which is vital for accurate assessment of changes in MDR marker expression in different cell populations in response to anticancer drugs. Validation was performed using established drug-sensitive (NCI-H460) and drug-resistant (NCI-H460/R) NSCLC cell lines, demonstrating the assay's capacity to distinguish and evaluate different MDR profiles. The obtained results revealed wide-ranging effects of various chemotherapeutic agents on MDR marker expression in different patient-derived NSCLC cultures, emphasizing the need for MDR diagnostics in NSCLC. In addition to being a valuable tool for assessing drug effects on MDR markers in different cell populations, the assay can complement genetic profiling to optimize treatment. Further assay adaptations may extend its application to other cancer types, improving treatment efficacy while minimizing the development of resistance.

7.
Plants (Basel) ; 12(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38140508

RESUMO

Euphorbia seguieriana ssp. seguieriana Necker (ES) and Euphorbia cyparissias (EC) with a habitat in the Deliblato Sands were the subject of this examination. The latexes of these so far insufficiently investigated species of the Euphorbia genus are used in traditional medicine for the treatment of wounds and warts on the skin. To determine their chemical composition, non-targeted screening of the latexes' chloroform extracts was performed using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry employing an electrospray ionization source (LC-ESI QTOF MS). The analysis of the obtained results showed that the latexes of ES and EC represent rich sources of diterpenes, tentatively identified as jatrophanes, ingenanes, tiglianes, myrsinanes, premyrsinanes, and others. Examination of the anticancer activity of the ES and EC latex extracts showed that both extracts significantly inhibited the growth of the non-small cell lung carcinoma NCI-H460 and glioblastoma U87 cell lines as well as of their corresponding multi-drug resistant (MDR) cell lines, NCI-H460/R and U87-TxR. The obtained results also revealed that the ES and EC extracts inhibited the function of P-glycoprotein (P-gp) in MDR cancer cells, whose overexpression is one of the main mechanisms underlying MDR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA