Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(33): e2305420120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549268

RESUMO

Stimulator of interferon genes (STING) is an essential adaptor protein required for the inflammatory response to cytosolic DNA. dsDNA activates cGAS to generate cGAMP, which binds and activates STING triggering a conformational change, oligomerization, and the IRF3- and NFκB-dependent transcription of type I Interferons (IFNs) and inflammatory cytokines, as well as the activation of autophagy. Aberrant activation of STING is now linked to a growing number of both rare as well as common chronic inflammatory diseases. Here, we identify and characterize a potent small-molecule inhibitor of STING. This compound, BB-Cl-amidine inhibits STING signaling and production of type I IFNs, IFN-stimulated genes (ISGs) and NFκB-dependent cytokines, but not other pattern recognition receptors. In vivo, BB-Cl-amidine alleviated pathology resulting from accrual of cytosolic DNA in Trex-1 mutant mice. Mechanistically BB-Cl-amidine inhibited STING oligomerization through modification of Cys148. Collectively, our work uncovers an approach to inhibit STING activation and highlights the potential of this strategy for the treatment of STING-driven inflammatory diseases.


Assuntos
Interferon Tipo I , Proteínas de Membrana , Camundongos , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transdução de Sinais/fisiologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Interferon Tipo I/metabolismo , NF-kappa B/metabolismo , DNA
2.
Nat Commun ; 13(1): 1406, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301296

RESUMO

Human rhinovirus (HRV), like coronavirus (HCoV), are positive-strand RNA viruses that cause both upper and lower respiratory tract illness, with their replication facilitated by concentrating RNA-synthesizing machinery in intracellular compartments made of modified host membranes, referred to as replication organelles (ROs). Here we report a non-canonical, essential function for stimulator of interferon genes (STING) during HRV infections. While the canonical function of STING is to detect cytosolic DNA and activate inflammatory responses, HRV infection triggers the release of STIM1-bound STING in the ER by lowering Ca2+, thereby allowing STING to interact with phosphatidylinositol 4-phosphate (PI4P) and traffic to ROs to facilitates viral replication and transmission via autophagy. Our results thus hint a critical function of STING in HRV viral replication and transmission, with possible implications for other RO-mediated RNA viruses.


Assuntos
Enterovirus , Vírus de RNA , Humanos , Organelas , Rhinovirus , Replicação Viral/fisiologia
3.
ACS Med Chem Lett ; 10(5): 780-785, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31097999

RESUMO

The serine/threonine protein kinase TBK1 (Tank-binding Kinase-1) is a noncanonical member of the IkB kinase (IKK) family. This kinase regulates signaling pathways in innate immunity, oncogenesis, energy homeostasis, autophagy, and neuroinflammation. Herein, we report the discovery and characterization of a novel potent and highly selective TBK1 inhibitor, GSK8612. In cellular assays, this small molecule inhibited toll-like receptor (TLR)3-induced interferon regulatory factor (IRF)3 phosphorylation in Ramos cells and type I interferon (IFN) secretion in primary human mononuclear cells. In THP1 cells, GSK8612 was able to inhibit secretion of interferon beta (IFNß) in response to dsDNA and cGAMP, the natural ligand for STING. GSK8612 is a TBK1 small molecule inhibitor displaying an excellent selectivity profile and therefore represents an ideal probe to further dissect the biology of TBK1 in models of immunity, neuroinflammation, obesity, or cancer.

5.
Nature ; 564(7736): 439-443, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30405246

RESUMO

Stimulator of interferon genes (STING) is a receptor in the endoplasmic reticulum that propagates innate immune sensing of cytosolic pathogen-derived and self DNA1. The development of compounds that modulate STING has recently been the focus of intense research for the treatment of cancer and infectious diseases and as vaccine adjuvants2. To our knowledge, current efforts are focused on the development of modified cyclic dinucleotides that mimic the endogenous STING ligand cGAMP; these have progressed into clinical trials in patients with solid accessible tumours amenable to intratumoral delivery3. Here we report the discovery of a small molecule STING agonist that is not a cyclic dinucleotide and is systemically efficacious for treating tumours in mice. We developed a linking strategy to synergize the effect of two symmetry-related amidobenzimidazole (ABZI)-based compounds to create linked ABZIs (diABZIs) with enhanced binding to STING and cellular function. Intravenous administration of a diABZI STING agonist to immunocompetent mice with established syngeneic colon tumours elicited strong anti-tumour activity, with complete and lasting regression of tumours. Our findings represent a milestone in the rapidly growing field of immune-modifying cancer therapies.


Assuntos
Benzimidazóis/química , Benzimidazóis/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/imunologia , Desenho de Fármacos , Proteínas de Membrana/agonistas , Animais , Benzimidazóis/administração & dosagem , Benzimidazóis/uso terapêutico , Humanos , Ligantes , Proteínas de Membrana/imunologia , Camundongos , Modelos Moleculares , Nucleotídeos Cíclicos/metabolismo
6.
J Biol Chem ; 286(21): 18845-55, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21454607

RESUMO

Carboxyl-terminal fragments (CTFs) of TDP-43 aggregate to form the diagnostic signature inclusions of frontotemporal lobar degeneration and amyotrophic lateral sclerosis, but the biological significance of these CTFs and how they are generated remain enigmatic. To address these issues, we engineered mammalian cells with an inducible tobacco etch virus (TEV) protease that cleaves TDP-43 containing a TEV cleavage site. Regions of TDP-43 flanking the second RNA recognition motif (RRM2) are efficiently cleaved by TEV, whereas sites within this domain are more resistant to cleavage. CTFs containing RRM2 generated from de novo cleavage of nuclear TDP-43 are transported to the cytoplasm and efficiently cleared, indicating that cleavage alone is not sufficient to initiate CTF aggregation. However, CTFs rapidly aggregated into stable cytoplasmic inclusions following de novo cleavage when dynein-mediated microtubule transport was disrupted, RNA was depleted, or natively misfolded CTFs were introduced into these cells. Our data support a "two-hit" mechanism of CTF aggregation dependent on TDP-43 cleavage.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Microtúbulos/metabolismo , Transporte Ativo do Núcleo Celular/genética , Motivos de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Linhagem Celular , Núcleo Celular/patologia , Citoplasma/genética , Citoplasma/patologia , Proteínas de Ligação a DNA/genética , Dineínas/genética , Dineínas/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Humanos , Microtúbulos/genética , Microtúbulos/patologia , RNA/genética , RNA/metabolismo
7.
Hum Mol Genet ; 18(R2): R156-62, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19808791

RESUMO

Amyotrophic lateral sclerosis (ALS) is the most common adult motor neuron disease that affects approximately 2/100,000 individuals each year worldwide. Patients with ALS suffer from rapidly progressive degeneration of motor neurons ultimately leading to death. The major pathological features observed in post-mortem tissue from patients with ALS are motor neuron loss, cortical spinal tract degeneration, gliosis and cytoplasmic neuronal inclusions formed by TDP-43 or TAR DNA binding Protein with a molecular mass of 43 kDa, which are now recognized as the signature lesions of sporadic ALS. TDP-43 possesses two RNA binding domains (RBD) and a glycine-rich C terminus classifying it with other heterogeneous nuclear ribonucleoproteins known as 2XRBD-Gly proteins. A number of reports showed that a subset of patients with ALS possess mutations in the TDP-43 (TARDBP) gene. This further strengthens the hypotheses that gain of toxic function or loss of function in TDP-43 causes ALS. Currently, 29 different TARDBP missense mutations have been reported in 51 unrelated sporadic or familial ALS cases and two cases of ALS plus concomitant frontotemporal lobar degeneration with a remarkable concentration of mutations in the C-terminal glycine-rich domain of TDP-43. As these mutations will most certainly be an invaluable tool for the design and implementation of ALS animal and cell models, as well as serve as a platform for exploring the pathobiology of TDP-43, here we summarize the identified pathogenic TARDBP mutations and their potential impact on our understanding of the role of TDP-43 in disease.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Glicina/metabolismo , Mutação/genética , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/patologia , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Estrutura Terciária de Proteína
8.
J Biol Chem ; 284(32): 21347-59, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19520849

RESUMO

pICln is an essential, highly conserved 26-kDa protein whose functions include binding to Sm proteins in the cytoplasm of human cells and mediating the ordered and regulated assembly of the cell's RNA-splicing machinery by the survival motor neurons complex. pICln also interacts with PRMT5, the enzyme responsible for generating symmetric dimethylarginine modifications on the carboxyl-terminal regions of three of the canonical Sm proteins. To better understand the role of pICln in these cellular processes, we have investigated the properties of pICln and pICln.Sm complexes and the effects that pICln has on the methyltransferase activity of PRMT5. We find that pICln is a monomer in solution, binds with high affinity (K(d) approximately 160 nm) to SmD3-SmB, and forms 1:1 complexes with Sm proteins and Sm protein subcomplexes. The data support an end-capping model of pICln binding that supports current views of how pICln prevents Sm oligomerization on illicit RNA substrates. We have found that by co-expression with pICln, recombinant PRMT5 can be produced in a soluble, active form. PRMT5 alone has promiscuous activity toward a variety of known substrates. In the presence of pICln, however, PRMT5 methylation of Sm proteins is stimulated, but methylation of histones is inhibited. We have also found that mutations in pICln that do not affect Sm protein binding can still have a profound effect on the methyltransferase activity of the PRMT5 complex. Together, the data provide insights into pICln function and represent an important starting point for biochemical analyses of PRMT5.


Assuntos
Canais Iônicos/fisiologia , Proteínas Metiltransferases/fisiologia , Saccharomyces cerevisiae/metabolismo , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/química , Histonas/química , Humanos , Cinética , Metiltransferases/metabolismo , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteína-Arginina N-Metiltransferases , RNA/química , Proteínas Recombinantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA