Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(4)2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675925

RESUMO

The interferon-induced host cell protein Shiftless (SFL) inhibits -1 programmed ribosomal frameshifting (-1PRF) required for the expression of HIV-1 Gal-Pol and the formation of infectious HIV-1 particles. However, the specific regions in SFL required for antiviral activity and the mechanism by which SFL inhibits -1PRF remain unclear. Employing alanine scanning mutagenesis, we found that basic amino acids in the predicted zinc ribbon motif of SFL are essential for the suppression of Gag-Pol expression but dispensable for anti-HIV-1 activity. We have shown that SFL inhibits the expression of the murine leukemia virus (MLV) Gag-Pol polyprotein and the formation of infectious MLV particles, although Gag-Pol expression of MLV is independent of -1PRF but requires readthrough of a stop codon. These findings indicate that SFL might inhibit HIV-1 infection by more than one mechanism and that SFL might target programmed translational readthrough as well as -1PRF signals, both of which are regulated by mRNA secondary structure elements.


Assuntos
Proteínas de Fusão gag-pol , Infecções por HIV , HIV-1 , Proteínas de Ligação a RNA , Humanos , Mudança da Fase de Leitura do Gene Ribossômico , Proteínas de Fusão gag-pol/genética , Proteínas de Fusão gag-pol/metabolismo , Regulação Viral da Expressão Gênica , Células HEK293 , Infecções por HIV/virologia , Infecções por HIV/genética , Infecções por HIV/metabolismo , HIV-1/genética , HIV-1/fisiologia , Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/fisiologia , Replicação Viral , Proteínas de Ligação a RNA/metabolismo
2.
BBA Adv ; 3: 100074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082265

RESUMO

Elongation factor P (EF-P) and its eukaryotic homolog eIF5A are auxiliary translation factors that facilitate peptide bond formation when several sequential proline (Pro) residues are incorporated into the nascent chain. EF-P and eIF5A bind to the exit (E) site of the ribosome and contribute to favorable entropy of the reaction by stabilizing tRNA binding in the peptidyl transferase center of the ribosome. In most organisms, EF-P and eIF5A carry a posttranslational modification that is crucial for catalysis. The chemical nature of the modification varies between different groups of bacteria and between pro- and eukaryotes, making the EF-P-modification enzymes promising targets for antibiotic development. In this review, we summarize our knowledge of the structure and function of EF-P and eIF5A, describe their modification enzymes, and present an approach for potential drug screening aimed at EarP, an enzyme that is essential for EF-P modification in several pathogenic bacteria.

3.
Biol Chem ; 404(8-9): 755-767, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37077160

RESUMO

In each round of translation elongation, the ribosome translocates along the mRNA by precisely one codon. Translocation is promoted by elongation factor G (EF-G) in bacteria (eEF2 in eukaryotes) and entails a number of precisely-timed large-scale structural rearrangements. As a rule, the movements of the ribosome, tRNAs, mRNA and EF-G are orchestrated to maintain the exact codon-wise step size. However, signals in the mRNA, as well as environmental cues, can change the timing and dynamics of the key rearrangements leading to recoding of the mRNA into production of trans-frame peptides from the same mRNA. In this review, we discuss recent advances on the mechanics of translocation and reading frame maintenance. Furthermore, we describe the mechanisms and biological relevance of non-canonical translocation pathways, such as hungry and programmed frameshifting and translational bypassing, and their link to disease and infection.


Assuntos
Fator G para Elongação de Peptídeos , Ribossomos , RNA Mensageiro/metabolismo , Fator G para Elongação de Peptídeos/genética , Ribossomos/genética , Ribossomos/metabolismo , Biossíntese de Proteínas/genética , Códon/análise , Códon/metabolismo , Fases de Leitura , RNA de Transferência/genética
4.
EMBO J ; 42(2): e112372, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36472247

RESUMO

Protein synthesis is crucial for cell growth and survival yet one of the most energy-consuming cellular processes. How, then, do cells sustain protein synthesis under starvation conditions when energy is limited? To accelerate the translocation of mRNA-tRNAs through the ribosome, bacterial elongation factor G (EF-G) hydrolyzes energy-rich guanosine triphosphate (GTP) for every amino acid incorporated into a protein. Here, we identify an EF-G paralog-EF-G2-that supports translocation without hydrolyzing GTP in the gut commensal bacterium Bacteroides thetaiotaomicron. EF-G2's singular ability to sustain protein synthesis, albeit at slow rates, is crucial for bacterial gut colonization. EF-G2 is ~10-fold more abundant than canonical EF-G1 in bacteria harvested from murine ceca and, unlike EF-G1, specifically accumulates during carbon starvation. Moreover, we uncover a 26-residue region unique to EF-G2 that is essential for protein synthesis, EF-G2 dissociation from the ribosome, and responsible for the absence of GTPase activity. Our findings reveal how cells curb energy consumption while maintaining protein synthesis to advance fitness in nutrient-fluctuating environments.


Assuntos
Bacteroides , Fator G para Elongação de Peptídeos , Animais , Camundongos , Bacteroides/genética , Bacteroides/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólise , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/química , Ribossomos/metabolismo , RNA de Transferência/metabolismo
5.
Viruses ; 14(7)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35891432

RESUMO

The interferon-induced host cell protein shiftless (SFL) was reported to inhibit human immunodeficiency virus (HIV) infection by blocking the -1 programmed ribosomal frameshifting (-1PRF) required for expression of the Gag-Pol polyprotein. However, it is not clear how SFL inhibits -1PRF. To address this question, we focused on a 36 amino acids comprising region (termed required for antiviral activity (RAA)) that is essential for suppression of -1PRF and HIV infection and is missing from SFL short (SFLS), a splice variant of SFL with unknown function. Here, we confirm that SFL, but not SFLS, inhibits HIV -1PRF and show that inhibition is cell-type-independent. Mutagenic and biochemical analyses demonstrated that the RAA region is required for SFL self-interactions and confirmed that it is necessary for ribosome association and binding to the HIV RNA. Analysis of SFL mutants with six consecutive amino-acids-comprising deletions in the RAA region suggests effects on binding to the HIV RNA, complete inhibition of -1PRF, inhibition of Gag-Pol expression, and antiviral activity. In contrast, these amino acids did not affect SFL expression and were partially dispensable for SFL self-interactions and binding to the ribosome. Collectively, our results support the notion that SFL binds to the ribosome and the HIV RNA in order to block -1PRF and HIV infection, and suggest that the multimerization of SFL may be functionally important.


Assuntos
Infecções por HIV , Aminoácidos , Antivirais , Humanos , Mutagênicos , RNA
6.
Nat Commun ; 12(1): 5933, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635670

RESUMO

GTPases are regulators of cell signaling acting as molecular switches. The translational GTPase EF-G stands out, as it uses GTP hydrolysis to generate force and promote the movement of the ribosome along the mRNA. The key unresolved question is how GTP hydrolysis drives molecular movement. Here, we visualize the GTPase-powered step of ongoing translocation by time-resolved cryo-EM. EF-G in the active GDP-Pi form stabilizes the rotated conformation of ribosomal subunits and induces twisting of the sarcin-ricin loop of the 23 S rRNA. Refolding of the GTPase switch regions upon Pi release initiates a large-scale rigid-body rotation of EF-G pivoting around the sarcin-ricin loop that facilitates back rotation of the ribosomal subunits and forward swiveling of the head domain of the small subunit, ultimately driving tRNA forward movement. The findings demonstrate how a GTPase orchestrates spontaneous thermal fluctuations of a large RNA-protein complex into force-generating molecular movement.


Assuntos
Escherichia coli/genética , Fator G para Elongação de Peptídeos/química , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Ribossômico 23S/química , RNA de Transferência/química , Ribossomos/metabolismo , Sítios de Ligação , Fenômenos Biomecânicos , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Hidrólise , Cinética , Modelos Moleculares , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribossomos/ultraestrutura , Termodinâmica
7.
RNA ; 27(9): 981-990, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34117118

RESUMO

Many antibiotics that bind to the ribosome inhibit translation by blocking the movement of tRNAs and mRNA or interfering with ribosome dynamics, which impairs the formation of essential translocation intermediates. Here we show how translocation inhibitors viomycin (Vio), neomycin (Neo), paromomycin (Par), kanamycin (Kan), spectinomycin (Spc), hygromycin B (HygB), and streptomycin (Str, an antibiotic that does not inhibit tRNA movement), affect principal motions of the small ribosomal subunits (SSU) during EF-G-promoted translocation. Using ensemble kinetics, we studied the SSU body domain rotation and SSU head domain swiveling in real time. We show that although antibiotics binding to the ribosome can favor a particular ribosome conformation in the absence of EF-G, their kinetic effect on the EF-G-induced transition to the rotated/swiveled state of the SSU is moderate. The antibiotics mostly inhibit backward movements of the SSU body and/or the head domains. Vio, Spc, and high concentrations of Neo completely inhibit the backward movements of the SSU body and head domain. Kan, Par, HygB, and low concentrations of Neo slow down both movements, but their sequence and coordination are retained. Finally, Str has very little effect on the backward rotation of the SSU body domain, but retards the SSU head movement. The data underscore the importance of ribosome dynamics for tRNA-mRNA translocation and provide new insights into the mechanism of antibiotic action.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Subunidades Ribossômicas/efeitos dos fármacos , Transporte Biológico , Cinamatos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Higromicina B/análogos & derivados , Higromicina B/farmacologia , Canamicina/farmacologia , Cinética , Neomicina/farmacologia , Paromomicina/farmacologia , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA de Transferência/antagonistas & inibidores , RNA de Transferência/química , RNA de Transferência/genética , Subunidades Ribossômicas/genética , Subunidades Ribossômicas/metabolismo , Subunidades Ribossômicas/ultraestrutura , Espectinomicina/farmacologia , Estreptomicina/farmacologia , Viomicina/farmacologia
8.
Nucleic Acids Res ; 48(3): 1056-1067, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31511883

RESUMO

During canonical translation, the ribosome moves along an mRNA from the start to the stop codon in exact steps of one codon at a time. The collinearity of the mRNA and the protein sequence is essential for the quality of the cellular proteome. Spontaneous errors in decoding or translocation are rare and result in a deficient protein. However, dedicated recoding signals in the mRNA can reprogram the ribosome to read the message in alternative ways. This review summarizes the recent advances in understanding the mechanisms of three types of recoding events: stop-codon readthrough, -1 ribosome frameshifting and translational bypassing. Recoding events provide insights into alternative modes of ribosome dynamics that are potentially applicable to other non-canonical modes of prokaryotic and eukaryotic translation.


Assuntos
Biossíntese de Proteínas , Códon de Terminação , Mudança da Fase de Leitura do Gene Ribossômico , Ribossomos/metabolismo
9.
Nat Commun ; 10(1): 4598, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601802

RESUMO

mRNA contexts containing a 'slippery' sequence and a downstream secondary structure element stall the progression of the ribosome along the mRNA and induce its movement into the -1 reading frame. In this study we build a thermodynamic model based on Bayesian statistics to explain how -1 programmed ribosome frameshifting can work. As training sets for the model, we measured frameshifting efficiencies on 64 dnaX mRNA sequence variants in vitro and also used 21 published in vivo efficiencies. With the obtained free-energy difference between mRNA-tRNA base pairs in the 0 and -1 frames, the frameshifting efficiency of a given sequence can be reproduced and predicted from the tRNA-mRNA base pairing in the two frames. Our results further explain how modifications in the tRNA anticodon modulate frameshifting and show how the ribosome tunes the strength of the base-pair interactions.


Assuntos
Proteínas de Bactérias/genética , DNA Polimerase III/genética , Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Modelos Teóricos , Pareamento de Bases , Teorema de Bayes , Códon , Mutação da Fase de Leitura , Lisina/genética , Fenilalanina/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Termodinâmica
10.
Biol Chem ; 401(1): 131-142, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31600135

RESUMO

Elongation factor G (EF-G) is a translational GTPase that acts at several stages of protein synthesis. Its canonical function is to catalyze tRNA movement during translation elongation, but it also acts at the last step of translation to promote ribosome recycling. Moreover, EF-G has additional functions, such as helping the ribosome to maintain the mRNA reading frame or to slide over non-coding stretches of the mRNA. EF-G has an unconventional GTPase cycle that couples the energy of GTP hydrolysis to movement. EF-G facilitates movement in the GDP-Pi form. To convert the energy of hydrolysis to movement, it requires various ligands in the A site, such as a tRNA in translocation, an mRNA secondary structure element in ribosome sliding, or ribosome recycling factor in post-termination complex disassembly. The ligand defines the direction and timing of EF-G-facilitated motion. In this review, we summarize recent advances in understanding the mechanism of EF-G action as a remarkable force-generating GTPase.


Assuntos
Guanosina Trifosfato/biossíntese , Fator G para Elongação de Peptídeos/genética , Biossíntese de Proteínas/genética , Ribossomos/genética , GTP Fosfo-Hidrolases/genética , Guanosina Trifosfato/genética , Hidrólise , Fator G para Elongação de Peptídeos/biossíntese , RNA Mensageiro/genética , RNA de Transferência/genética
11.
FEBS Lett ; 593(13): 1468-1482, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31222875

RESUMO

Some proteins are expressed as a result of a ribosome frameshifting event that is facilitated by a slippery site and downstream secondary structure elements in the mRNA. This review summarizes recent progress in understanding mechanisms of -1 frameshifting in several viral genes, including IBV 1a/1b, HIV-1 gag-pol, and SFV 6K, and in Escherichia coli dnaX. The exact frameshifting route depends on the availability of aminoacyl-tRNAs: the ribosome normally slips into the -1-frame during tRNA translocation, but can also frameshift during decoding at condition when aminoacyl-tRNA is in limited supply. Different frameshifting routes and additional slippery sites allow viruses to maintain a constant production of their key proteins. The emerging idea that tRNA pools are important for frameshifting provides new direction for developing antiviral therapies.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , RNA Bacteriano/genética , RNA Viral/genética , RNA Mensageiro/genética
12.
Nucleic Acids Res ; 47(10): 5210-5222, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30968122

RESUMO

A hallmark of translation in human immunodeficiency virus type 1 (HIV-1) is a -1 programmed ribosome frameshifting event that produces the Gag-Pol fusion polyprotein. The constant Gag to Gag-Pol ratio is essential for the virion structure and infectivity. Here we show that the frameshifting efficiency is modulated by Leu-tRNALeu that reads the UUA codon at the mRNA slippery site. This tRNALeu isoacceptor is particularly rare in human cell lines derived from T-lymphocytes, the cells that are targeted by HIV-1. When UUA decoding is delayed, the frameshifting follows an alternative route, which maintains the Gag to Gag-Pol ratio constant. A second potential slippery site downstream of the first one is normally inefficient but can also support -1-frameshifting when altered by a compensatory resistance mutation in response to current antiviral drug therapy. Together these different regimes allow the virus to maintain a constant -1-frameshifting efficiency to ensure successful virus propagation.


Assuntos
Mutação da Fase de Leitura , Proteínas de Fusão gag-pol/genética , HIV-1/genética , RNA de Transferência/genética , Códon/genética , Escherichia coli/metabolismo , Mudança da Fase de Leitura do Gene Ribossômico , Células HeLa , Humanos , Cinética , Biossíntese de Proteínas , RNA de Transferência de Leucina/genética , RNA Viral/genética , Ribossomos/genética , Vírion/genética , Replicação Viral/genética
13.
Sci Adv ; 5(12): eaax8030, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31903418

RESUMO

During translation, the ribosome moves along the mRNA one codon at a time with the help of elongation factor G (EF-G). Spontaneous changes in the translational reading frame are extremely rare, yet how the precise triplet-wise step is maintained is not clear. Here, we show that the ribosome is prone to spontaneous frameshifting on mRNA slippery sequences, whereas EF-G restricts frameshifting. EF-G helps to maintain the mRNA reading frame by guiding the A-site transfer RNA during translocation due to specific interactions with the tip of EF-G domain 4. Furthermore, EF-G accelerates ribosome rearrangements that restore the ribosome's control over the codon-anticodon interaction at the end of the movement. Our data explain how the mRNA reading frame is maintained during translation.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/genética , Proteínas Mutantes/metabolismo , Fator G para Elongação de Peptídeos/metabolismo , RNA Mensageiro/genética , Fases de Leitura , Anticódon/metabolismo , Sequência de Bases , Códon/metabolismo , Escherichia coli/citologia , Escherichia coli/genética , Cinética , Domínios Proteicos , RNA de Transferência/metabolismo , Ribossomos/metabolismo
14.
Elife ; 72018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29889659

RESUMO

Release factors RF1 and RF2 promote hydrolysis of peptidyl-tRNA during translation termination. The GTPase RF3 promotes recycling of RF1 and RF2. Using single molecule FRET and biochemical assays, we show that ribosome termination complexes that carry two factors, RF1-RF3 or RF2-RF3, are dynamic and fluctuate between non-rotated and rotated states, whereas each factor alone has its distinct signature on ribosome dynamics and conformation. Dissociation of RF1 depends on peptide release and the presence of RF3, whereas RF2 can dissociate spontaneously. RF3 binds in the GTP-bound state and can rapidly dissociate without GTP hydrolysis from termination complex carrying RF1. In the absence of RF1, RF3 is stalled on ribosomes if GTP hydrolysis is blocked. Our data suggest how the assembly of the ribosome-RF1-RF3-GTP complex, peptide release, and ribosome fluctuations promote termination of protein synthesis and recycling of the release factors.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/genética , Aminoacil-RNA de Transferência/genética , Ribossomos/genética , Carbocianinas/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Hidrólise , Cinética , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/metabolismo , Imagem Individual de Molécula , Termodinâmica
15.
Mol Cell ; 68(3): 515-527.e6, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100052

RESUMO

Ribosomes synthesizing proteins containing consecutive proline residues become stalled and require rescue via the action of uniquely modified translation elongation factors, EF-P in bacteria, or archaeal/eukaryotic a/eIF5A. To date, no structures exist of EF-P or eIF5A in complex with translating ribosomes stalled at polyproline stretches, and thus structural insight into how EF-P/eIF5A rescue these arrested ribosomes has been lacking. Here we present cryo-EM structures of ribosomes stalled on proline stretches, without and with modified EF-P. The structures suggest that the favored conformation of the polyproline-containing nascent chain is incompatible with the peptide exit tunnel of the ribosome and leads to destabilization of the peptidyl-tRNA. Binding of EF-P stabilizes the P-site tRNA, particularly via interactions between its modification and the CCA end, thereby enforcing an alternative conformation of the polyproline-containing nascent chain, which allows a favorable substrate geometry for peptide bond formation.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Peptídeos/metabolismo , Ribossomos/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestrutura , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Conformação de Ácido Nucleico , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/ultraestrutura , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/metabolismo , Peptídeos/química , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribossomos/química , Ribossomos/ultraestrutura , Relação Estrutura-Atividade , Fator de Iniciação de Tradução Eucariótico 5A
16.
Mol Cell ; 66(4): 558-567.e4, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28525745

RESUMO

Ribosome frameshifting during translation of bacterial dnaX can proceed via different routes, generating a variety of distinct polypeptides. Using kinetic experiments, we show that -1 frameshifting predominantly occurs during translocation of two tRNAs bound to the slippery sequence codons. This pathway depends on a stem-loop mRNA structure downstream of the slippery sequence and operates when aminoacyl-tRNAs are abundant. However, when aminoacyl-tRNAs are in short supply, the ribosome switches to an alternative frameshifting pathway that is independent of a stem-loop. Ribosome stalling at a vacant 0-frame A-site codon results in slippage of the P-site peptidyl-tRNA, allowing for -1-frame decoding. When the -1-frame aminoacyl-tRNA is lacking, the ribosomes switch into -2 frame. Quantitative mass spectrometry shows that the -2-frame product is synthesized in vivo. We suggest that switching between frameshifting routes may enrich gene expression at conditions of aminoacyl-tRNA limitation.


Assuntos
Proteínas de Bactérias/biossíntese , DNA Polimerase III/biossíntese , Escherichia coli/enzimologia , Mudança da Fase de Leitura do Gene Ribossômico , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Proteínas de Bactérias/genética , DNA Polimerase III/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Cinética , Mutação , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
17.
RNA Biol ; 13(12): 1197-1203, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27801619

RESUMO

In each round of translation elongation, tRNAs and mRNA move within the ribosome by one codon at a time. tRNA-mRNA translocation is promoted by elongation factor G (EF-G) at the cost of GTP hydrolysis. The key questions for understanding translocation are how and when the tRNAs move and how EF-G coordinates motions of the ribosomal subunits with tRNA movement. Here we present 2 recent papers which describe the choreography of movements over the whole trajectory of translocation. We present the view that EF-G accelerates translocation by promoting the steps that lead to GTPase-dependent ribosome unlocking. EF-G facilitates the formation of the rotated state of the ribosome and uncouples the backward motions of the ribosomal subunits, forming an open conformation in which the tRNAs can rapidly move. Ribosome dynamics are important not only in translocation, but also in recoding events, such as frameshifting and bypassing, and mediate sensitivity to antibiotics.


Assuntos
Fator G para Elongação de Peptídeos/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Guanosina Trifosfato/química , Hidrólise , Modelos Moleculares , Fator G para Elongação de Peptídeos/química , Biossíntese de Proteínas , RNA Mensageiro/química , RNA de Transferência/química , Ribossomos/química
18.
Cell Rep ; 16(8): 2187-2196, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27524615

RESUMO

Ribosome dynamics play an important role in translation. The rotation of the ribosomal subunits relative to one another is essential for tRNA-mRNA translocation. An important unresolved question is whether subunit rotation limits the rate of translocation. Here, we monitor subunit rotation relative to peptide bond formation and translocation using ensemble kinetics and single-molecule FRET. We observe that spontaneous forward subunit rotation occurs at a rate of 40 s(-1), independent of the rate of preceding peptide bond formation. Elongation factor G (EF-G) accelerates forward subunit rotation to 200 s(-1). tRNA-mRNA movement is much slower (10-40 s(-1)), suggesting that forward subunit rotation does not limit the rate of translocation. The transition back to the non-rotated state of the ribosome kinetically coincides with tRNA-mRNA movement. Thus, large-scale movements of the ribosome are intrinsically rapid and gated by its ligands such as EF-G and tRNA.


Assuntos
Fator G para Elongação de Peptídeos/química , Biossíntese de Proteínas , RNA Mensageiro/química , RNA de Transferência/química , Subunidades Ribossômicas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Cinética , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Subunidades Ribossômicas/metabolismo , Rotação
19.
Nat Struct Mol Biol ; 23(4): 342-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26999556

RESUMO

During translation elongation, ribosome translocation along an mRNA entails rotations of the ribosomal subunits, swiveling motions of the small subunit (SSU) head and stepwise movements of the tRNAs together with the mRNA. Here, we reconstructed the choreography of the collective motions of the Escherichia coli ribosome during translocation promoted by elongation factor EF-G, by recording the fluorescence signatures of nine different reporters placed on both ribosomal subunits, tRNA and mRNA. We captured an early forward swiveling of the SSU head taking place while the SSU body rotates in the opposite, clockwise direction. Backward swiveling of the SSU head starts upon tRNA translocation and continues until the post-translocation state is reached. This work places structures of translocation intermediates along a time axis and unravels principles of the motions of macromolecular machines.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fator G para Elongação de Peptídeos/metabolismo , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Guanosina Trifosfato/metabolismo , Hidrólise , Simulação de Dinâmica Molecular , Fator G para Elongação de Peptídeos/química , RNA Bacteriano/química , RNA Mensageiro/química , RNA de Transferência/química , RNA de Transferência/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/química
20.
Nucleic Acids Res ; 43(13): 6426-38, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26040702

RESUMO

Selenocysteine (Sec) is inserted into proteins by recoding a UGA stop codon followed by a selenocysteine insertion sequence (SECIS). UGA recoding by the Sec machinery is believed to be very inefficient owing to RF2-mediated termination at UGA. Here we show that recoding efficiency in vivo is 30-40% independently of the cell growth rate. Efficient recoding requires sufficient selenium concentrations in the medium. RF2 is an unexpectedly poor competitor of Sec. We recapitulate the major characteristics of SECIS-dependent UGA recoding in vitro using a fragment of fdhF-mRNA encoding a natural bacterial selenoprotein. Only 40% of actively translating ribosomes that reach the UGA codon insert Sec, even in the absence of RF2, suggesting that the capacity to insert Sec into proteins is inherently limited. RF2 does not compete with the Sec incorporation machinery; rather, it terminates translation on those ribosomes that failed to incorporate Sec. The data suggest a model in which early recruitment of Sec-tRNA(Sec)-SelB-GTP to the SECIS blocks the access of RF2 to the stop codon, thereby prioritizing recoding over termination at Sec-dedicated stop codons.


Assuntos
Códon de Terminação , Terminação Traducional da Cadeia Peptídica , Selenocisteína/metabolismo , Selenoproteínas/biossíntese , Formiato Desidrogenases/biossíntese , Formiato Desidrogenases/genética , Hidrogenase/biossíntese , Hidrogenase/genética , Complexos Multienzimáticos/biossíntese , Complexos Multienzimáticos/genética , Fatores de Terminação de Peptídeos/metabolismo , RNA Mensageiro/química , Selenoproteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA