Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Diabetol ; 22(1): 327, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017481

RESUMO

BACKGROUND: Matrix metalloproteinase 12 (MMP12) is a macrophage-secreted protein that is massively upregulated as a pro-inflammatory factor in metabolic and vascular tissues of mice and humans suffering from cardiometabolic diseases (CMDs). However, the molecular mechanisms explaining the contributions of MMP12 to CMDs are still unclear. METHODS: We investigated the impact of MMP12 deficiency on CMDs in a mouse model that mimics human disease by simultaneously developing adipose tissue inflammation, insulin resistance, and atherosclerosis. To this end, we generated and characterized low-density lipoprotein receptor (Ldlr)/Mmp12-double knockout (DKO) mice fed a high-fat sucrose- and cholesterol-enriched diet for 16-20 weeks. RESULTS: DKO mice showed lower cholesterol and plasma glucose concentrations and improved insulin sensitivity compared with LdlrKO mice. Untargeted proteomic analyses of epididymal white adipose tissue revealed that inflammation- and fibrosis-related pathways were downregulated in DKO mice. In addition, genetic deletion of MMP12 led to alterations in immune cell composition and a reduction in plasma monocyte chemoattractant protein-1 in peripheral blood which indicated decreased low-grade systemic inflammation. Aortic en face analyses and staining of aortic valve sections demonstrated reduced atherosclerotic plaque size and collagen content, which was paralleled by an improved relaxation pattern and endothelial function of the aortic rings and more elastic aortic sections in DKO compared to LdlrKO mice. Shotgun proteomics revealed upregulation of anti-inflammatory and atheroprotective markers in the aortas of DKO mice, further supporting our data. In humans, MMP12 serum concentrations were only weakly associated with clinical and laboratory indicators of CMDs. CONCLUSION: We conclude that the genetic deletion of MMP12 ameliorates obesity-induced low-grade inflammation, white adipose tissue dysfunction, biomechanical properties of the aorta, and the development of atherosclerosis. Therefore, therapeutic strategies targeting MMP12 may represent a promising approach to combat CMDs.


Assuntos
Aterosclerose , Resistência à Insulina , Placa Aterosclerótica , Animais , Humanos , Camundongos , Aterosclerose/genética , Aterosclerose/prevenção & controle , Colesterol , Modelos Animais de Doenças , Inflamação/genética , Inflamação/metabolismo , Metaloproteinase 12 da Matriz/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteômica , Receptores de LDL/genética
2.
J Biol Chem ; 299(5): 104611, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931394

RESUMO

Adipose tissue plays a crucial role in maintaining metabolic homeostasis by storing lipids and glucose from circulation as intracellular fat. As peripheral tissues like adipose tissue become insulin resistant, decompensation of blood glucose levels occurs causing type 2 diabetes (T2D). Currently, modulating the glycocalyx, a layer of cell-surface glycans, is an underexplored pharmacological treatment strategy to improve glucose homeostasis in T2D patients. Here, we show a novel role for cell-surface heparan sulfate (HS) in establishing glucose uptake capacity and metabolic utilization in differentiated adipocytes. Using a combination of chemical and genetic interventions, we identified that HS modulates this metabolic phenotype by attenuating levels of Wnt signaling during adipogenesis. By engineering, the glycocalyx of pre-adipocytes with exogenous synthetic HS mimetics, we were able to enhance glucose clearance capacity after differentiation through modulation of Wnt ligand availability. These findings establish the cellular glycocalyx as a possible new target for therapeutic intervention in T2D patients by enhancing glucose clearance capacity independent of insulin secretion.


Assuntos
Adipogenia , Diabetes Mellitus Tipo 2 , Humanos , Adipogenia/genética , Glicocálix/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Heparitina Sulfato , Glucose/metabolismo
3.
JCI Insight ; 7(13)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35653195

RESUMO

Apolipoprotein C-III (apoC-III) is a critical regulator of triglyceride metabolism and correlates positively with hypertriglyceridemia and cardiovascular disease (CVD). It remains unclear if therapeutic apoC-III lowering reduces CVD risk and if the CVD correlation depends on the lipid-lowering or antiinflammatory properties. We determined the impact of interventional apoC-III lowering on atherogenesis using an apoC-III antisense oligonucleotide (ASO) in 2 hypertriglyceridemic mouse models where the intervention lowers plasma triglycerides and in a third lipid-refractory model. On a high-cholesterol Western diet apoC-III ASO treatment did not alter atherosclerotic lesion size but did attenuate advanced and unstable plaque development in the triglyceride-responsive mouse models. No lesion size or composition improvement was observed with apoC-III ASO in the lipid-refractory mice. To circumvent confounding effects of continuous high-cholesterol feeding, we tested the impact of interventional apoC-III lowering when switching to a cholesterol-poor diet after 12 weeks of Western diet. In this diet switch regimen, apoC-III ASO treatment significantly reduced plasma triglycerides, atherosclerotic lesion progression, and necrotic core area and increased fibrous cap thickness in lipid-responsive mice. Again, apoC-III ASO treatment did not alter triglyceride levels, lesion development, and lesion composition in lipid-refractory mice after the diet switch. Our findings suggest that interventional apoC-III lowering might be an effective strategy to reduce atherosclerosis lesion size and improve plaque stability when lipid lowering is achieved.


Assuntos
Aterosclerose , Hiperlipidemias , Placa Aterosclerótica , Animais , Apolipoproteína C-III , Proteínas de Transporte , Colesterol , Camundongos , Oligonucleotídeos , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Triglicerídeos/metabolismo
4.
J Biol Chem ; 298(8): 102159, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35750212

RESUMO

Lysosomal storage diseases result in various developmental and physiological complications, including cachexia. To study the causes for the negative energy balance associated with cachexia, we assessed the impact of sulfamidase deficiency and heparan sulfate storage on energy homeostasis and metabolism in a mouse model of type IIIa mucopolysaccharidosis (MPS IIIa, Sanfilippo A syndrome). At 12-weeks of age, MPS IIIa mice exhibited fasting and postprandial hypertriglyceridemia compared with wildtype mice, with a reduction of white and brown adipose tissues. Partitioning of dietary [3H]triolein showed a marked increase in intestinal uptake and secretion, whereas hepatic production and clearance of triglyceride-rich lipoproteins did not differ from wildtype controls. Uptake of dietary triolein was also elevated in brown adipose tissue (BAT), and notable increases in beige adipose tissue occurred, resulting in hyperthermia, hyperphagia, hyperdipsia, and increased energy expenditure. Furthermore, fasted MPS IIIa mice remained hyperthermic when subjected to low temperature but became cachexic and profoundly hypothermic when treated with a lipolytic inhibitor. We demonstrated that the reliance on increased lipid fueling of BAT was driven by a reduced ability to generate energy from stored lipids within the depot. These alterations arose from impaired autophagosome-lysosome fusion, resulting in increased mitochondria content in beige and BAT. Finally, we show that increased mitochondria content in BAT and postprandial dyslipidemia was partially reversed upon 5-week treatment with recombinant sulfamidase. We hypothesize that increased BAT activity and persistent increases in energy demand in MPS IIIa mice contribute to the negative energy balance observed in patients with MPS IIIa.


Assuntos
Hipertrigliceridemia , Mucopolissacaridose III , Tecido Adiposo Marrom/metabolismo , Animais , Caquexia , Camundongos , Mitofagia , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/terapia , Trioleína
5.
Front Immunol ; 11: 769, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508807

RESUMO

Proteoglycans are a specific subset of glycoproteins found at the cell surface and in the extracellular matrix, where they interact with a plethora of proteins involved in metabolic homeostasis and meta-inflammation. Over the last decade, new insights have emerged on the mechanism and biological significance of these interactions in the context of diet-induced disorders such as obesity and type-2 diabetes. Complications of energy metabolism drive most diet-induced metabolic disorders, which results in low-grade chronic inflammation, thereby affecting proper function of many vital organs involved in energy homeostasis, such as the brain, liver, kidney, heart and adipose tissue. Here, we discuss how heparan, chondroitin and keratan sulfate proteoglycans modulate obesity-induced metabolic dysfunction and low-grade inflammation that impact the initiation and progression of obesity-associated morbidities.


Assuntos
Obesidade/imunologia , Obesidade/metabolismo , Proteoglicanas/imunologia , Proteoglicanas/metabolismo , Adipócitos , Tecido Adiposo , Animais , Dieta , Matriz Extracelular/metabolismo , Proteoglicanas de Heparan Sulfato , Humanos , Inflamação/metabolismo , Camundongos
6.
Cell Metab ; 31(6): 1173-1188.e5, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32413335

RESUMO

G protein-coupled receptor 120 (GPR120) and PPARγ agonists each have insulin sensitizing effects. But whether these two pathways functionally interact and can be leveraged together to markedly improve insulin resistance has not been explored. Here, we show that treatment with the PPARγ agonist rosiglitazone (Rosi) plus the GPR120 agonist Compound A leads to additive effects to improve glucose tolerance and insulin sensitivity, but at lower doses of Rosi, thus avoiding its known side effects. Mechanistically, we show that GPR120 is a PPARγ target gene in adipocytes, while GPR120 augments PPARγ activity by inducing the endogenous ligand 15d-PGJ2 and by blocking ERK-mediated inhibition of PPARγ. Further, we used macrophage- (MKO) or adipocyte-specific GPR120 KO (AKO) mice to show that GRP120 has anti-inflammatory effects via macrophages while working with PPARγ in adipocytes to increase insulin sensitivity. These results raise the prospect of a safer way to increase insulin sensitization in the clinic.


Assuntos
Insulina/metabolismo , PPAR gama/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células 3T3-L1 , Acetatos/farmacologia , Adipócitos/metabolismo , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , PPAR gama/agonistas , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/deficiência , Rosiglitazona/farmacologia , Tiramina/análogos & derivados , Tiramina/farmacologia
7.
FASEB J ; 33(12): 13808-13824, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31638418

RESUMO

N-acetylaspartate (NAA) is synthesized by aspartate N-acetyltransferase (gene: Nat8l) from acetyl-coenzyme A and aspartate. In the brain, NAA is considered an important energy metabolite for lipid synthesis. However, the role of NAA in peripheral tissues remained elusive. Therefore, we characterized the metabolic phenotype of knockout (ko) and adipose tissue-specific (ako) Nat8l-ko mice as well as NAA-supplemented mice on various diets. We identified an important role of NAA availability in the brain during adolescence, as 75% of Nat8l-ko mice died on fat-free diet (FFD) after weaning but could be rescued by NAA supplementation. In adult life, NAA deficiency promotes a beneficial metabolic phenotype, as Nat8l-ko and Nat8l-ako mice showed reduced body weight, increased energy expenditure, and improved glucose tolerance on chow, high-fat, and FFDs. Furthermore, Nat8l-deficient adipocytes exhibited increased mitochondrial respiration, ATP synthesis, and an induction of browning. Conversely, NAA-treated wild-type mice showed reduced adipocyte respiration and lipolysis and increased de novo lipogenesis, culminating in reduced energy expenditure, glucose tolerance, and insulin sensitivity. Mechanistically, our data point to a possible role of NAA as modulator of pancreatic insulin secretion and suggest NAA as a critical energy metabolite for adipocyte and whole-body energy homeostasis.-Hofer, D. C., Zirkovits, G., Pelzmann, H. J., Huber, K., Pessentheiner, A. R., Xia, W., Uno, K., Miyazaki, T., Kon, K., Tsuneki, H., Pendl, T., Al Zoughbi, W., Madreiter-Sokolowski, C. T., Trausinger, G., Abdellatif, M., Schoiswohl, G., Schreiber, R., Eisenberg, T., Magnes, C., Sedej, S., Eckhardt, M., Sasahara, M., Sasaoka, T., Nitta, A., Hoefler, G., Graier, W. F., Kratky, D., Auwerx, J., Bogner-Strauss, J. G. N-acetylaspartate availability is essential for juvenile survival on fat-free diet and determines metabolic health.


Assuntos
Ácido Aspártico/análogos & derivados , Acetilcoenzima A/metabolismo , Acetiltransferases/metabolismo , Adipócitos/metabolismo , Animais , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Dieta com Restrição de Gorduras , Metabolismo Energético/fisiologia , Resistência à Insulina/fisiologia , Lipólise/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo
8.
J Lipid Res ; 60(8): 1379-1395, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31092690

RESUMO

Hypertriglyceridemia results from accumulation of triglyceride (TG)-rich lipoproteins (TRLs) in the circulation and is associated with increased CVD risk. ApoC-III is an apolipoprotein on TRLs and a prominent negative regulator of TG catabolism. We recently established that in vivo apoC-III predominantly inhibits LDL receptor-mediated and LDL receptor-related protein 1-mediated hepatic TRL clearance and that apoC-III-enriched TRLs are preferentially cleared by syndecan-1 (SDC1). In this study, we determined the impact of apoE, a common ligand for all three receptors, on apoC-III metabolism using apoC-III antisense oligonucleotide (ASO) treatment in mice lacking apoE and functional SDC1 (Apoe-/-Ndst1f/fAlb-Cre+). ApoC-III ASO treatment significantly reduced plasma TG levels in Apoe-/-Ndst1f/fAlb-Cre+ mice without reducing hepatic VLDL production or improving hepatic TRL clearance. Further analysis revealed that apoC-III ASO treatment lowered plasma TGs in Apoe-/-Ndst1f/fAlb-Cre+ mice, which was associated with increased LPL activity in white adipose tissue in the fed state. Finally, clinical data confirmed that ASO-mediated lowering of APOC-III via volanesorsen can reduce plasma TG levels independent of the APOE isoform genotype. Our data indicate that apoE determines the metabolic impact of apoC-III as we establish that apoE is essential to mediate inhibition of TRL clearance by apoC-III and that, in the absence of functional apoE, apoC-III inhibits tissue LPL activity.


Assuntos
Apolipoproteína C-III/metabolismo , Apolipoproteínas E/deficiência , Lipase Lipoproteica/metabolismo , Triglicerídeos/sangue , Animais , Apolipoproteína C-III/genética , Lipase Lipoproteica/genética , Camundongos , Camundongos Knockout para ApoE , Receptores de LDL/genética , Receptores de LDL/metabolismo
9.
Cell Rep ; 23(7): 1948-1961, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29768196

RESUMO

Elevated circulating fatty acids (FAs) contribute to obesity-associated metabolic complications, but the mechanisms by which insulin suppresses lipolysis are poorly understood. We show that α/ß-hydrolase domain-containing 15 (ABHD15) is required for the anti-lipolytic action of insulin in white adipose tissue (WAT). Neither insulin nor glucose treatments can suppress FA mobilization in global and conditional Abhd15-knockout (KO) mice. Accordingly, insulin signaling is impaired in Abhd15-KO adipocytes, as indicated by reduced AKT phosphorylation, glucose uptake, and de novo lipogenesis. In vitro data reveal that ABHD15 associates with and stabilizes phosphodiesterase 3B (PDE3B). Accordingly, PDE3B expression is decreased in the WAT of Abhd15-KO mice, mechanistically explaining increased protein kinase A (PKA) activity, hormone-sensitive lipase (HSL) phosphorylation, and undiminished FA release upon insulin signaling. Ultimately, Abhd15-KO mice develop insulin resistance. Notably, ABHD15 expression is decreased in humans with obesity and diabetes compared to humans with obesity and normal glucose tolerance, identifying ABHD15 as a potential therapeutic target to mitigate insulin resistance.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Resistência à Insulina , Insulina/farmacologia , Lipólise , Proteínas de Membrana/metabolismo , Células 3T3-L1 , Tecido Adiposo Branco/metabolismo , Animais , Hidrolases de Éster Carboxílico/genética , Dieta Hiperlipídica , Estabilidade Enzimática/efeitos dos fármacos , Ácidos Graxos/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Humanos , Lipólise/efeitos dos fármacos , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/patologia , Fenótipo
11.
FASEB J ; 31(9): 4088-4103, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28559441

RESUMO

Adipocyte plasma membrane-associated protein (APMAP) has been described as an adipogenic factor in 3T3-L1 cells with unknown biochemical function; we therefore aimed to investigate the physiologic function of APMAP in vivo We generated Apmap-knockout mice and challenged them with an obesogenic diet to investigate their metabolic phenotype. We identified a novel truncated adipocyte-specific isoform of APMAP in mice that is produced by alternative transcription. Mice lacking the full-length APMAP protein, the only isoform that is expressed in humans, have an improved metabolic phenotype upon diet-induced obesity, indicated by enhanced insulin sensitivity, preserved glucose tolerance, increased respiratory exchange ratio, decreased inflammatory marker gene expression, and reduced adipocyte size. At the molecular level, APMAP interacts with the extracellular collagen cross-linking matrix proteins lysyl oxidase-like 1 and 3. On a high-fat diet, the expression of lysyl oxidase-like 1 and 3 is strongly decreased in Apmap-knockout mice, paralleled by reduced expression of profibrotic collagens and total collagen content in epididymal white adipose tissue, indicating decreased fibrotic potential. Together, our data suggest that APMAP is a novel regulator of extracellular matrix components, and establish that APMAP is a potential target to mitigate obesity-associated insulin resistance.-Pessentheiner, A. R., Huber, K., Pelzmann, H. J., Prokesch, A., Radner, F. P. W., Wolinski, H., Lindroos-Christensen, J., Hoefler, G., Rülicke, T., Birner-Gruenberger, R., Bilban, M., Bogner-Strauss, J. G. APMAP interacts with lysyl oxidase-like proteins, and disruption of Apmap leads to beneficial visceral adipose tissue expansion.


Assuntos
Aminoácido Oxirredutases/metabolismo , Regulação da Expressão Gênica/fisiologia , Gordura Intra-Abdominal/metabolismo , Glicoproteínas de Membrana/metabolismo , Adipócitos/citologia , Adipócitos/fisiologia , Aminoácido Oxirredutases/genética , Animais , Tamanho Celular , Dieta Hiperlipídica , Regulação para Baixo , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Obesidade , Isoformas de Proteínas
12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(3): 358-368, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28017862

RESUMO

The importance of peroxisomes for adipocyte function is poorly understood. Herein, we provide insights into the critical role of peroxin 16 (PEX16)-mediated peroxisome biogenesis in adipocyte development and lipid metabolism. Pex16 is highly expressed in adipose tissues and upregulated during adipogenesis of murine and human cells. We demonstrate that Pex16 is a target gene of the adipogenesis "master-regulator" PPARγ. Stable silencing of Pex16 in 3T3-L1 cells strongly reduced the number of peroxisomes while mitochondrial number was unaffected. Concomitantly, peroxisomal fatty acid (FA) oxidation was reduced, thereby causing accumulation of long- and very long-chain (polyunsaturated) FAs and reduction of odd-chain FAs. Further, Pex16-silencing decreased cellular oxygen consumption and increased FA release. Additionally, silencing of Pex16 impaired adipocyte differentiation, lipogenic and adipogenic marker gene expression, and cellular triglyceride stores. Addition of PPARγ agonist rosiglitazone and peroxisome-related lipid species to Pex16-silenced 3T3-L1 cells rescued adipogenesis. These data provide evidence that PEX16 is required for peroxisome biogenesis and highlights the relevance of peroxisomes for adipogenesis and adipocyte lipid metabolism.


Assuntos
Adipócitos Brancos/metabolismo , Homeostase/fisiologia , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Células 3T3-L1 , Adipogenia/fisiologia , Animais , Células COS , Diferenciação Celular/fisiologia , Linhagem Celular , Chlorocebus aethiops , Ácidos Graxos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Consumo de Oxigênio/fisiologia , PPAR gama/metabolismo , Regulação para Cima/fisiologia
13.
Mol Metab ; 4(5): 378-91, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25973386

RESUMO

OBJECTIVE: Adipose tissue is the primary site for lipid deposition that protects the organisms in cases of nutrient excess during obesogenic diets. The histone deacetylase Sirtuin 1 (SIRT1) inhibits adipocyte differentiation by targeting the transcription factor peroxisome proliferator activated-receptor gamma (PPARγ). METHODS: To assess the specific role of SIRT1 in adipocytes, we generated Sirt1 adipocyte-specific knockout mice (ATKO) driven by aP2 promoter onto C57BL/6 background. Sirt1 (flx/flx) aP2Cre (+) (ATKO) and Sirt1 (flx/flx) aP2Cre (-) (WT) mice were fed high-fat diet for 5 weeks (short-term) or 15 weeks (chronic-term). Metabolic studies were combined with gene expression analysis and phosphorylation/acetylation patterns in adipose tissue. RESULTS: On standard chow, ATKO mice exhibit low-grade chronic inflammation in adipose tissue, along with glucose intolerance and insulin resistance compared with control fed mice. On short-term HFD, ATKO mice become more glucose intolerant, hyperinsulinemic, insulin resistant and display increased inflammation. During chronic HFD, WT mice developed a metabolic dysfunction, higher than ATKO mice, and thereby, knockout mice are more glucose tolerant, insulin sensitive and less inflamed relative to control mice. SIRT1 attenuates adipogenesis through PPARγ repressive acetylation and, in the ATKO mice adipocyte PPARγ was hyperacetylated. This high acetylation was associated with a decrease in Ser273-PPARγ phosphorylation. Dephosphorylated PPARγ is constitutively active and results in higher expression of genes associated with increased insulin sensitivity. CONCLUSION: Together, these data establish that SIRT1 downregulation in adipose tissue plays a previously unknown role in long-term inflammation resolution mediated by PPARγ activation. Therefore, in the context of obesity, the development of new therapeutics that activate PPARγ by targeting SIRT1 may provide novel approaches to the treatment of T2DM.

14.
Diabetes ; 64(4): 1120-30, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25315009

RESUMO

The current dogma is that obesity-associated hepatic inflammation is due to increased Kupffer cell (KC) activation. However, recruited hepatic macrophages (RHMs) were recently shown to represent a sizable liver macrophage population in the context of obesity. Therefore, we assessed whether KCs and RHMs, or both, represent the major liver inflammatory cell type in obesity. We used a combination of in vivo macrophage tracking methodologies and adoptive transfer techniques in which KCs and RHMs are differentially labeled with fluorescent markers. With these approaches, the inflammatory phenotype of these distinct macrophage populations was determined under lean and obese conditions. In vivo macrophage tracking revealed an approximately sixfold higher number of RHMs in obese mice than in lean mice, whereas the number of KCs was comparable. In addition, RHMs comprised smaller size and immature, monocyte-derived cells compared with KCs. Furthermore, RHMs from obese mice were more inflamed and expressed higher levels of tumor necrosis factor-α and interleukin-6 than RHMs from lean mice. A comparison of the MCP-1/C-C chemokine receptor type 2 (CCR2) chemokine system between the two cell types showed that the ligand (MCP-1) is more highly expressed in KCs than in RHMs, whereas CCR2 expression is approximately fivefold greater in RHMs. We conclude that KCs can participate in obesity-induced inflammation by causing the recruitment of RHMs, which are distinct from KCs and are not precursors to KCs. These RHMs then enhance the severity of obesity-induced inflammation and hepatic insulin resistance.


Assuntos
Gluconeogênese/fisiologia , Fígado/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Interleucina-6/metabolismo , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Fígado/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Obesos , Obesidade/etiologia , Obesidade/patologia , Receptores CCR2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Nat Med ; 20(8): 942-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24997608

RESUMO

It is well known that the ω-3 fatty acids (ω-3-FAs; also known as n-3 fatty acids) can exert potent anti-inflammatory effects. Commonly consumed as fish products, dietary supplements and pharmaceuticals, ω-3-FAs have a number of health benefits ascribed to them, including reduced plasma triglyceride levels, amelioration of atherosclerosis and increased insulin sensitivity. We reported that Gpr120 is the functional receptor for these fatty acids and that ω-3-FAs produce robust anti-inflammatory, insulin-sensitizing effects, both in vivo and in vitro, in a Gpr120-dependent manner. Indeed, genetic variants that predispose to obesity and diabetes have been described in the gene encoding GPR120 in humans (FFAR4). However, the amount of fish oils that would have to be consumed to sustain chronic agonism of Gpr120 is too high to be practical, and, thus, a high-affinity small-molecule Gpr120 agonist would be of potential clinical benefit. Accordingly, Gpr120 is a widely studied drug discovery target within the pharmaceutical industry. Gpr40 is another lipid-sensing G protein-coupled receptor, and it has been difficult to identify compounds with a high degree of selectivity for Gpr120 over Gpr40 (ref. 11). Here we report that a selective high-affinity, orally available, small-molecule Gpr120 agonist (cpdA) exerts potent anti-inflammatory effects on macrophages in vitro and in obese mice in vivo. Gpr120 agonist treatment of high-fat diet-fed obese mice causes improved glucose tolerance, decreased hyperinsulinemia, increased insulin sensitivity and decreased hepatic steatosis. This suggests that Gpr120 agonists could become new insulin-sensitizing drugs for the treatment of type 2 diabetes and other human insulin-resistant states in the future.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácidos Graxos Ômega-3/metabolismo , Resistência à Insulina/fisiologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Arginase/biossíntese , Linfócitos B Reguladores/imunologia , Sequência de Bases , Diabetes Mellitus Tipo 2/genética , Ácidos Docosa-Hexaenoicos/farmacologia , Fígado Gorduroso/tratamento farmacológico , Hiperinsulinismo/tratamento farmacológico , Inflamação , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Dados de Sequência Molecular , Óxido Nítrico Sintase Tipo II/biossíntese , Obesidade/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Linfócitos T Reguladores/imunologia
16.
PLoS One ; 8(11): e79134, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24236098

RESUMO

Our knowledge about adipocyte metabolism and development is steadily growing, yet many players are still undefined. Here, we show that α/ß-hydrolase domain containing protein 15 (Abhd15) is a direct and functional target gene of peroxisome proliferator-activated receptor gamma (PPARγ), the master regulator of adipogenesis. In line, Abhd15 is mainly expressed in brown and white adipose tissue and strongly upregulated during adipogenesis in various murine and human cell lines. Stable knockdown of Abhd15 in 3T3-L1 cells evokes a striking differentiation defect, as evidenced by low lipid accumulation and decreased expression of adipocyte marker genes. In preconfluent cells, knockdown of Abhd15 leads to impaired proliferation, which is caused by apoptosis, as we see an increased SubG1 peak, caspase 3/7 activity, and BAX protein expression as well as a reduction in anti-apoptotic BCL-2 protein. Furthermore, apoptosis-inducing amounts of palmitic acid evoke a massive increase of Abhd15 expression, proposing an apoptosis-protecting role for ABHD15. On the other hand, in mature adipocytes physiological (i.e. non-apoptotic) concentrations of palmitic acid down-regulate Abhd15 expression. Accordingly, we found that the expression of Abhd15 in adipose tissue is reduced in physiological situations with high free fatty acid levels, like high-fat diet, fasting, and aging as well as in genetically obese mice. Collectively, our results position ABHD15 as an essential component in the development of adipocytes as well as in apoptosis, thereby connecting two substantial factors in the regulation of adipocyte number and size. Together with its intricate regulation by free fatty acids, ABHD15 might be an intriguing new target in obesity and diabetes research.


Assuntos
Apoptose , Hidrolases de Éster Carboxílico/genética , Proteínas de Membrana/genética , Células 3T3-L1 , Adipogenia , Animais , Hidrolases de Éster Carboxílico/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Regulação Enzimológica da Expressão Gênica , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/fisiologia
17.
BMC Genomics ; 14: 758, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24191950

RESUMO

BACKGROUND: Fasting induces specific molecular and metabolic adaptions in most organisms. In biomedical research fasting is used in metabolic studies to synchronize nutritional states of study subjects. Because there is a lack of standardization for this procedure, we need a deeper understanding of the dynamics and the molecular mechanisms in fasting. RESULTS: We investigated the dynamic changes of liver gene expression and serum parameters of mice at several time points during a 48 hour fasting experiment and then focused on the global gene expression changes in epididymal white adipose tissue (WAT) as well as on pathways common to WAT, liver, and skeletal muscle. This approach produced several intriguing insights: (i) rather than a sequential activation of biochemical pathways in fasted liver, as current knowledge dictates, our data indicates a concerted parallel response; (ii) this first characterization of the transcriptome signature of WAT of fasted mice reveals a remarkable activation of components of the transcription apparatus; (iii) most importantly, our bioinformatic analyses indicate p53 as central node in the regulation of fasting in major metabolic tissues; and (iv) forced expression of Ddit4, a fasting-regulated p53 target gene, is sufficient to augment lipolysis in cultured adipocytes. CONCLUSIONS: In summary, this combination of focused and global profiling approaches provides a comprehensive molecular characterization of the processes operating during fasting in mice and suggests a role for p53, and its downstream target Ddit4, as novel components in the transcriptional response to food deprivation.


Assuntos
Fatores de Transcrição/metabolismo , Transcriptoma , Proteína Supressora de Tumor p53/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Linhagem Celular , Privação de Alimentos , Perfilação da Expressão Gênica , Gluconeogênese , Lipogênese , Lipólise , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Anotação de Sequência Molecular , Músculo Esquelético/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais , Estresse Fisiológico , Fatores de Transcrição/genética , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Regulação para Cima
18.
J Biol Chem ; 288(50): 36040-51, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24155240

RESUMO

NAT8L (N-acetyltransferase 8-like) catalyzes the formation of N-acetylaspartate (NAA) from acetyl-CoA and aspartate. In the brain, NAA delivers the acetate moiety for synthesis of acetyl-CoA that is further used for fatty acid generation. However, its function in other tissues remained elusive. Here, we show for the first time that Nat8l is highly expressed in adipose tissues and murine and human adipogenic cell lines and is localized in the mitochondria of brown adipocytes. Stable overexpression of Nat8l in immortalized brown adipogenic cells strongly increases glucose incorporation into neutral lipids, accompanied by increased lipolysis, indicating an accelerated lipid turnover. Additionally, mitochondrial mass and number as well as oxygen consumption are elevated upon Nat8l overexpression. Concordantly, expression levels of brown marker genes, such as Prdm16, Cidea, Pgc1α, Pparα, and particularly UCP1, are markedly elevated in these cells. Treatment with a PPARα antagonist indicates that the increase in UCP1 expression and oxygen consumption is PPARα-dependent. Nat8l knockdown in brown adipocytes has no impact on cellular triglyceride content, lipogenesis, or oxygen consumption, but lipolysis and brown marker gene expression are increased; the latter is also observed in BAT of Nat8l-KO mice. Interestingly, the expression of ATP-citrate lyase is increased in Nat8l-silenced adipocytes and BAT of Nat8l-KO mice, indicating a compensatory mechanism to sustain the acetyl-CoA pool once Nat8l levels are reduced. Taken together, our data show that Nat8l impacts on the brown adipogenic phenotype and suggests the existence of the NAT8L-driven NAA metabolism as a novel pathway to provide cytosolic acetyl-CoA for lipid synthesis in adipocytes.


Assuntos
Acetiltransferases/metabolismo , Adipócitos Marrons/metabolismo , Metabolismo Energético , Metabolismo dos Lipídeos , Acetilcoenzima A/metabolismo , Acetiltransferases/deficiência , Acetiltransferases/genética , Adipócitos Marrons/citologia , Adipócitos Marrons/enzimologia , Adipogenia , Animais , Proteínas de Ciclo Celular/metabolismo , Regulação Enzimológica da Expressão Gênica , Técnicas de Inativação de Genes , Inativação Gênica , Humanos , Canais Iônicos/metabolismo , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Tamanho Mitocondrial , PPAR alfa/metabolismo , Fenótipo , Fosfoproteínas/metabolismo , Proteínas Quinases/genética , Transporte Proteico , Proteína Desacopladora 1 , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...