Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746329

RESUMO

The liver acts as a master regulator of metabolic homeostasis in part by performing gluconeogenesis. This process is dysregulated in type 2 diabetes, leading to elevated hepatic glucose output. The parenchymal cells of the liver (hepatocytes) are heterogeneous, existing on an axis between the portal triad and the central vein, and perform distinct functions depending on location in the lobule. Here, using single cell analysis of hepatocytes across the liver lobule, we demonstrate that gluconeogenic gene expression ( Pck1 and G6pc ) is relatively low in the fed state and gradually increases first in the periportal hepatocytes during the initial fasting period. As the time of fasting progresses, pericentral hepatocyte gluconeogenic gene expression increases, and following entry into the starvation state, the pericentral hepatocytes show similar gluconeogenic gene expression to the periportal hepatocytes. Similarly, pyruvate-dependent gluconeogenic activity is approximately 10-fold higher in the periportal hepatocytes during the initial fasting state but only 1.5-fold higher in the starvation state. In parallel, starvation suppresses canonical beta-catenin signaling and modulates expression of pericentral and periportal glutamine synthetase and glutaminase, resulting in an enhanced pericentral glutamine-dependent gluconeogenesis. These findings demonstrate that hepatocyte gluconeogenic gene expression and gluconeogenic activity are highly spatially and temporally plastic across the liver lobule, underscoring the critical importance of using well-defined feeding and fasting conditions to define the basis of hepatic insulin resistance and glucose production.

2.
bioRxiv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38659949

RESUMO

Background and Aims: The visceral organ-brain axis, mediated by vagal sensory neurons in the vagal nerve ganglion, is essential for maintaining various physiological functions. In this study, we investigated the impact of liver-projecting vagal sensory neurons on energy balance, hepatic steatosis, and anxiety-like behavior in mice under obesogenic conditions. Methods: We performed single-nucleus RNA sequencing of vagal sensory neurons innervating the liver. Based on our snRNA-Seq results, we used the Avil CreERT2 strain to identify vagal sensory neurons that innervate the liver. Results: A small subset of polymodal sensory neurons innervating the liver was located in the left and right ganglia, projecting centrally to the nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the vagus, and peripherally to the periportal areas in the liver. Male and female control mice developed diet-induced obesity (DIO) during high-fat diet feeding. Deleting liver-projecting advillin-positive vagal sensory neurons prevented DIO in male and female mice, and these outcomes are associated with increased energy expenditure. Although males and females exhibited improved glucose homeostasis following disruption of liver-projecting vagal sensory neurons, only male mice displayed increased insulin sensitivity. The loss of liver-projecting vagal sensory neurons limited the progression of hepatic steatosis in male and female mice fed a steatogenic diet. Finally, mice lacking liver-innervating vagal sensory neurons exhibited less anxiety-like behavior compared to the control mice. Conclusions: The liver-brain axis contributes to the regulation of energy balance, glucose tolerance, hepatic steatosis, and anxiety-like behavior depending on the nutrient status in healthy and obesogenic conditions.

3.
Nat Commun ; 15(1): 2856, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565851

RESUMO

Aging, chronic high-fat diet feeding, or housing at thermoneutrality induces brown adipose tissue (BAT) involution, a process characterized by reduction of BAT mass and function with increased lipid droplet size. Single nuclei RNA sequencing of aged mice identifies a specific brown adipocyte population of Ucp1-low cells that are pyroptotic and display a reduction in the longevity gene syntaxin 4 (Stx4a). Similar to aged brown adipocytes, Ucp1-STX4KO mice display loss of brown adipose tissue mass and thermogenic dysfunction concomitant with increased pyroptosis. Restoration of STX4 expression or suppression of pyroptosis activation protects against the decline in both mass and thermogenic activity in the aged and Ucp1-STX4KO mice. Mechanistically, STX4 deficiency reduces oxidative phosphorylation, glucose uptake, and glycolysis leading to reduced ATP levels, a known triggering signal for pyroptosis. Together, these data demonstrate an understanding of rapid brown adipocyte involution and that physiologic aging and thermogenic dysfunction result from pyroptotic signaling activation.


Assuntos
Tecido Adiposo Marrom , Piroptose , Animais , Camundongos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Transdução de Sinais , Termogênese/fisiologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
4.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260695

RESUMO

Hepatic lipid metabolism is regulated by the autonomic nervous system of the liver, with the sympathetic innervation being extensively studied, while the parasympathetic efferent innervation is less understood despite its potential importance. In this study, we investigate the consequences of disrupted brain-liver communication on hepatic lipid metabolism in mice exposed to obesogenic conditions. We found that a subset of hepatocytes and the bile duct are innervated by parasympathetic nerves originating from the dorsal motor nucleus of the vagus. The elimination of the brain-liver axis by deleting parasympathetic cholinergic neurons innervating the liver prevents hepatic steatosis and promots browning of inguinal white adipose tissue (ingWAT). The loss of the brain-liver axis also raises hepatic Cyp7b1 expression and fasting serum bile acid levels. Furthermore, knockdown of the G protein-coupled bile acid receptor 1 gene in ingWAT reverses the beneficial effects of the loss of the brain-liver axis, leading to the reappearance of hepatic steatosis in the experimental groups. However, deleting the brain-liver axis has a small but significant effect on body weight, which is accompanied by an increase in energy expenditure. Therefore, altering parasympathetic cholinergic innervation of the liver could offer a potential therapeutic approach for enhancing hepatic lipid metabolism in obesity and diabetes.

5.
iScience ; 26(5): 106664, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37168570

RESUMO

SNARE-mediated membrane fusion plays a crucial role in presynaptic vesicle exocytosis and also in postsynaptic receptor delivery. The latter is considered particularly important for synaptic plasticity and learning and memory, yet the identity of the key SNARE proteins remains elusive. Here, we investigate the role of neuronal synaptosomal-associated protein-23 (SNAP-23) by analyzing pyramidal-neuron specific SNAP-23 conditional knockout (cKO) mice. Electrophysiological analysis of SNAP-23 deficient neurons using acute hippocampal slices showed normal basal neurotransmission in CA3-CA1 synapses with unchanged AMPA and NMDA currents. Nevertheless, we found theta-burst stimulation-induced long-term potentiation (LTP) was vastly diminished in SNAP-23 cKO slices. Moreover, unlike syntaxin-4 cKO mice where both basal neurotransmission and LTP decrease manifested changes in a broad set of behavioral tasks, deficits of SNAP-23 cKO are more limited to spatial memory. Our data reveal that neuronal SNAP-23 is selectively crucial for synaptic plasticity and spatial memory without affecting basal glutamate receptor function.

6.
Nat Commun ; 14(1): 38, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596796

RESUMO

Recent studies implicate macrophages in regulation of thermogenic, sympathetic neuron-mediated norepinephrine (NE) signaling in adipose tissues, but understanding of such non-classical macrophage activities is incomplete. Here we show that male mice lacking the allograft inflammatory factor-1 (AIF1) protein resist high fat diet (HFD)-induced obesity and hyperglycemia. We link this phenotype to higher adipose NE levels that stem from decreased monoamine oxidase A (MAOA) expression and NE clearance by AIF1-deficient macrophages, and find through reciprocal bone marrow transplantation that donor Aif1-/- vs WT genotype confers the obesity phenotype in mice. Interestingly, human sequence variants near the AIF1 locus associate with obesity and diabetes; in adipose samples from participants with obesity, we observe direct correlation of AIF1 and MAOA transcript levels. These findings identify AIF1 as a regulator of MAOA expression in macrophages and catecholamine activity in adipose tissues - limiting energy expenditure and promoting energy storage - and suggest how it might contribute to human obesity.


Assuntos
Tecido Adiposo , Catecolaminas , Obesidade , Animais , Humanos , Masculino , Camundongos , Tecido Adiposo/metabolismo , Adiposidade , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Catecolaminas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Norepinefrina/metabolismo , Obesidade/genética , Obesidade/metabolismo
7.
Mol Metab ; 64: 101548, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35863637

RESUMO

OBJECTIVE: Cyclin C (CCNC) is the most conserved subunit of the Mediator complex, which is an important transcription cofactor. Recently, we have found that CCNC facilitates brown adipogenesis in vitro by activating C/EBPα-dependent transcription. However, the role of CCNC in brown adipose tissue (BAT) in vivo remains unclear. METHODS: We generated conditional knock-out mice by crossing Ccncflox/flox mice with Myf5Cre, Ucp1Cre or AdipoqCre transgenic mice to investigate the role of CCNC in BAT development and function. We applied glucose and insulin tolerance test, cold exposure and indirect calorimetry to capture the physiological phenotypes and used immunostaining, immunoblotting, qRT-PCR, RNA-seq and cell culture to elucidate the underlying mechanisms. RESULTS: Here, we show that deletion of CCNC in Myf5+ progenitor cells caused BAT paucity, despite the fact that there was significant neonatal lethality. Mechanistically different from in vitro, CCNC deficiency impaired the proliferation of embryonic brown fat progenitor cells without affecting brown adipogenesis or cell death. Interestingly, CCNC deficiency robustly reduced age-dependent lipid accumulation in differentiated brown adipocytes in all three mouse models. Mechanistically, CCNC in brown adipocytes is required for lipogenic gene expression through the activation of the C/EBPα/GLUT4/ChREBP axis. Consistent with the importance of de novo lipogenesis under carbohydrate-rich diets, high-fat diet (HFD) feeding abolished CCNC deficiency -caused defects of lipid accumulation in BAT. Although insulin sensitivity and response to acute cold exposure were not affected, CCNC deficiency in Ucp1+ cells enhanced the browning of white adipose tissue (beiging) upon prolonged cold exposure. CONCLUSIONS: Together, these data indicate an important role of CCNC-Mediator in the regulation of BAT development and lipid accumulation in brown adipocytes.


Assuntos
Adipócitos Marrons , Ciclina C , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Ciclina C/metabolismo , Lipídeos , Camundongos , Camundongos Knockout , Camundongos Transgênicos
8.
Elife ; 112022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35254259

RESUMO

Cholinergic and sympathetic counter-regulatory networks control numerous physiological functions, including learning/memory/cognition, stress responsiveness, blood pressure, heart rate, and energy balance. As neurons primarily utilize glucose as their primary metabolic energy source, we generated mice with increased glycolysis in cholinergic neurons by specific deletion of the fructose-2,6-phosphatase protein TIGAR. Steady-state and stable isotope flux analyses demonstrated increased rates of glycolysis, acetyl-CoA production, acetylcholine levels, and density of neuromuscular synaptic junction clusters with enhanced acetylcholine release. The increase in cholinergic signaling reduced blood pressure and heart rate with a remarkable resistance to cold-induced hypothermia. These data directly demonstrate that increased cholinergic signaling through the modulation of glycolysis has several metabolic benefits particularly to increase energy expenditure and heat production upon cold exposure.


Assuntos
Acetilcolina , Junção Neuromuscular , Acetilcolina/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Colinérgicos/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Junção Neuromuscular/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Termogênese
9.
JCI Insight ; 6(24)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34784301

RESUMO

BACKGROUNDSkeletal muscle maladaptation accompanies chronic kidney disease (CKD) and negatively affects physical function. Emphasis in CKD has historically been placed on muscle fiber-intrinsic deficits, such as altered protein metabolism and atrophy. However, targeted treatment of fiber-intrinsic dysfunction has produced limited improvement, whereas alterations within the fiber-extrinsic environment have scarcely been examined.METHODSWe investigated alterations to the skeletal muscle interstitial environment with deep cellular phenotyping of biopsies from patients with CKD and age-matched controls and performed transcriptome profiling to define the molecular underpinnings of CKD-associated muscle impairments. We examined changes in muscle maladaptation following initiation of dialysis therapy for kidney failure.RESULTSPatients with CKD exhibited a progressive fibrotic muscle phenotype, which was associated with impaired regenerative capacity and lower vascular density. The severity of these deficits was strongly associated with the degree of kidney dysfunction. Consistent with these profound deficits, CKD was associated with broad alterations to the muscle transcriptome, including altered ECM organization, downregulated angiogenesis, and altered expression of pathways related to stem cell self-renewal. Remarkably, despite the seemingly advanced nature of this fibrotic transformation, dialysis treatment rescued these deficits, restoring a healthier muscle phenotype. Furthermore, after accounting for muscle atrophy, strength and endurance improved after dialysis initiation.CONCLUSIONThese data identify a dialysis-responsive muscle fibrotic phenotype in CKD and suggest the early dialysis window presents a unique opportunity of improved muscle regenerative capacity during which targeted interventions may achieve maximal impact.TRIAL REGISTRATIONNCT01452412FUNDINGNIH, NIH Clinical and Translational Science Awards (CTSA), and Einstein-Mount Sinai Diabetes Research Center.


Assuntos
Fibrose/etiologia , Doenças Musculares/etiologia , Diálise Renal/métodos , Insuficiência Renal Crônica/complicações , Estudos de Casos e Controles , Feminino , Fibrose/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Musculares/patologia , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/terapia , Fatores de Risco
10.
Physiol Genomics ; 53(11): 456-472, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643091

RESUMO

Excessive long-term consumption of dietary carbohydrates, including glucose, sucrose, or fructose, has been shown to have significant impact on genome-wide gene expression, which likely results from changes in metabolic substrate flux. However, there has been no comprehensive study on the acute effects of individual sugars on the genome-wide gene expression that may reveal the genetic changes altering signaling pathways, subsequent metabolic processes, and ultimately physiological/pathological responses. Considering that gene expressions in response to acute carbohydrate ingestion might be different in nutrient sensitive and insensitive mammals, we conducted comparative studies of genome-wide gene expression by deep mRNA sequencing of the liver in nutrient sensitive C57BL/6J and nutrient insensitive BALB/cJ mice. Furthermore, to determine the temporal responses, we compared livers from mice in the fasted state and following ingestion of standard laboratory mouse chow supplemented with plain drinking water or water containing 20% glucose, sucrose, or fructose. Supplementation with these carbohydrates induced unique extents and temporal changes in gene expressions in a strain specific manner. Fructose and sucrose stimulated gene changes peaked at 3 h postprandial, whereas glucose effects peaked at 12 h and 6 h postprandial in C57BL/6J and BABL/cJ mice, respectively. Network analyses revealed that fructose changed genes were primarily involved in lipid metabolism and were more complex in C57BL/6J than in BALB/cJ mice. These data demonstrate that there are qualitative and antitative differences in the normal physiological responses of the liver between these two strains of mice and C57BL/6J is more sensitive to sugar intake than BALB/cJ.


Assuntos
Carboidratos da Dieta/administração & dosagem , Suplementos Nutricionais , Fígado/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Animais , Carboidratos da Dieta/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Ingestão de Alimentos , Jejum , Frutose/administração & dosagem , Frutose/metabolismo , Glucose/administração & dosagem , Glucose/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução de Sinais/genética , Especificidade da Espécie , Sacarose/administração & dosagem , Sacarose/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
11.
Mol Metab ; 48: 101227, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33812059

RESUMO

OBJECTIVE: Liver glycogen levels are dynamic and highly regulated by nutrient availability as the levels decrease during fasting and are restored during the feeding cycle. However, feeding in the presence of fructose in water suppresses glycogen accumulation in the liver by upregulating the expression of the glucose-6-phosphatase catalytic subunit (G6pc) gene, although the exact mechanism is unknown. We generated liver-specific knockout MED13 mice that lacked the transcriptional Mediator complex kinase module to examine its effect on the transcriptional activation of inducible target gene expression, such as the ChREBP- and FOXO1-dependent control of the G6pc gene promoter. METHODS: The relative changes in liver expression of lipogenic and gluconeogenic genes as well as glycogen levels were examined in response to feeding standard low-fat laboratory chow supplemented with water or water containing sucrose or fructose in control (Med13fl/fl) and liver-specific MED13 knockout (MED13-LKO) mice. RESULTS: Although MED13 deficiency had no significant effect on constitutive gene expression, all the dietary inducible gene transcripts were significantly reduced despite the unchanged insulin sensitivity in the MED13-LKO mice compared to that in the control mice. G6pc gene transcription displayed the most significant difference between the Med13 fl/fl and MED13-LKO mice, particularly when fed fructose. Following fasting that depleted liver glycogen, feeding induced the restoration of glycogen levels except in the presence of fructose. MED13 deficiency rescued the glycogen accumulation defect in the presence of fructose. This resulted from the suppression of G6pc expression and thus G6PC enzymatic activity. Among two transcriptional factors that regulate G6pc gene expression, FOXO1 binding to the G6pc promoter was not affected, whereas ChREBP binding was dramatically reduced in MED13-LKO hepatocytes. In addition, there was a marked suppression of FOXO1 and ChREBP-ß transcriptional activities in MED13-LKO hepatocytes. CONCLUSIONS: Taken together, our data suggest that the kinase module of the Mediator complex is necessary for the transcriptional activation of metabolic genes such as G6pc and has an important role in regulating glycogen levels in the liver through altering transcription factor binding and activity at the G6pc promoter.


Assuntos
Domínio Catalítico/genética , Frutose/metabolismo , Glucose-6-Fosfatase/química , Glucose-6-Fosfatase/metabolismo , Glicogênio Hepático/biossíntese , Fígado/metabolismo , Complexo Mediador/metabolismo , Transdução de Sinais/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células Cultivadas , Ativação Enzimática/genética , Jejum , Frutose/farmacologia , Expressão Gênica , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Glucose-6-Fosfatase/genética , Hepatócitos/metabolismo , Resistência à Insulina/genética , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Masculino , Complexo Mediador/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
12.
Dev Cell ; 56(6): 747-760.e6, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33667344

RESUMO

Loss of insulin-secreting pancreatic ß cells through apoptosis contributes to the progression of type 2 diabetes, but underlying mechanisms remain elusive. Here, we identify a pathway in which the cell death inhibitor ARC paradoxically becomes a killer during diabetes. While cytoplasmic ARC maintains ß cell viability and pancreatic architecture, a pool of ARC relocates to the nucleus to induce ß cell apoptosis in humans with diabetes and several pathophysiologically distinct mouse models. ß cell death results through the coordinate downregulation of serpins (serine protease inhibitors) not previously known to be synthesized and secreted by ß cells. Loss of the serpin α1-antitrypsin from the extracellular space unleashes elastase, triggering the disruption of ß cell anchorage and subsequent cell death. Administration of α1-antitrypsin to mice with diabetes prevents ß cell death and metabolic abnormalities. These data uncover a pathway for ß cell loss in type 2 diabetes and identify an FDA-approved drug that may impede progression of this syndrome.


Assuntos
Apoptose , Núcleo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Células Secretoras de Insulina/patologia , Proteínas do Tecido Nervoso/metabolismo , alfa 1-Antitripsina/química , Animais , Proteínas Reguladoras de Apoptose/fisiologia , Citoplasma/metabolismo , Proteínas do Citoesqueleto/genética , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/fisiologia , Proteínas do Tecido Nervoso/genética , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
13.
J Biol Chem ; 295(44): 15045-15053, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32848017

RESUMO

Previously we reported that adipocyte SNAP23 (synaptosome-associated protein of 23 kDa) deficiency blocks the activation of macroautophagy, leading to an increased abundance of BAX, a pro-death Bcl-2 family member, and activation and adipocyte cell death both in vitro and in vivo Here, we found that knockdown of SNAP23 inhibited the association of the autophagosome regulators ATG16L1 and ATG9 compartments by nutrient depletion and reduced the formation of ATG16L1 membrane puncta. ATG16L1 knockdown inhibited autophagy flux and increased BAX protein levels by suppressing BAX degradation. The elevation in BAX protein had no effect on BAX activation or cell death in the nutrient-replete state. However, following nutrient depletion, BAX was activated with a concomitant induction of cell death. Co-immunoprecipitation analyses demonstrated that SNAP23 and ATG16L1 proteins form a stable complex independent of nutrient condition, whereas in the nutrient-depleted state, BAX binds to SNAP23 to form a ternary BAX-SNAP23-ATG16L1 protein complex. Taken together, these data support a model in which SNAP23 plays a crucial function as a scaffold for ATG16L1 necessary for the suppression of BAX activation and induction of the intrinsic cell death program.


Assuntos
Apoptose/fisiologia , Proteínas Relacionadas à Autofagia/fisiologia , Autofagia/fisiologia , Proteína X Associada a bcl-2/metabolismo , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Camundongos , Células NIH 3T3 , Ligação Proteica , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/genética , Proteínas Qc-SNARE/metabolismo , Frações Subcelulares/metabolismo
14.
Int J Mol Sci ; 21(13)2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32635651

RESUMO

Adipose tissue is an important regulator of whole-body metabolism and energy homeostasis. The unprecedented growth of obesity and metabolic disease worldwide has required paralleled advancements in research on this dynamic endocrine organ system. Single-cell RNA sequencing (scRNA-seq), a highly meticulous methodology used to dissect tissue heterogeneity through the transcriptional characterization of individual cells, is responsible for facilitating critical advancements in this area. The unique investigative capabilities achieved by the combination of nanotechnology, molecular biology, and informatics are expanding our understanding of adipose tissue's composition and compartmentalized functional specialization, which underlie physiologic and pathogenic states, including adaptive thermogenesis, adipose tissue aging, and obesity. In this review, we will summarize the use of scRNA-seq and single-nuclei RNA-seq (snRNA-seq) in adipocyte biology and their applications to obesity and diabetes research in the hopes of increasing awareness of the capabilities of this technology and acting as a catalyst for its expanded use in further investigation.


Assuntos
Adipócitos Bege/metabolismo , Tecido Adiposo/metabolismo , Genômica , Análise de Célula Única , Tecido Adiposo/imunologia , Animais , Células Cultivadas , Humanos , Obesidade/imunologia , Análise de Sequência de RNA , Células-Tronco/fisiologia , Transcriptoma
15.
Molecules ; 25(12)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570757

RESUMO

The family with sequence similarity 83 (FAM83) protein family G (FAM83G) possesses a predicted consensus phosphorylation motif for serine/threonine-protein kinase D1/protein kinase C mu (PKD1/PKCµ) at serine residue 356 (S356). In this study, overexpressed wild-type FAM83G coimmunoprecipitated with PKD1/PKCµ in Chinese hamster ovary (CHO) cells inhibited heat shock protein 27 (HSP27) phosphorylation at S82 and reduced the living cell number. The expression of a FAM83G phosphorylation-resistant mutant (S356A-FAM83G) had no effect on the living cell number or the induction of spontaneous apoptosis. By contrast, the introduction of a synthetic peptide encompassing FAM83G S356 into HCT116 and HepG2 cells decreased HSP27 S15 and S82 phosphorylation and induced spontaneous apoptosis. On the other hand, the introduction of FAM83G phosphorylation-resistant mutant synthesized peptides (S356A-AF-956 and S356A-AG-066) did not reduce the living cell number or induce spontaneous apoptosis. The endogenous expression of HSP27 and FAM83G was apparently greater in HCT116 and HepG2 cells compared with in CHO cells. In various types of lung cancer cell lines, the FAM83G messenger RNA (mRNA) level in non-small lung cancer cells was at a similar level to that in non-cancerous cells. However, the FAM83G mRNA level in the small cell lung cancer cell lines was variable, and the HSP27 mRNA level in FAM83G mRNA-rich types was greater than that in FAM83G mRNA-normal range types. Taken together, these data demonstrate that FAM83G S356 phosphorylation modulates HSP27 phosphorylation and apoptosis regulation and that HSP27 is a counterpart of FAM83G.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Oxirredutases do Álcool , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Células HCT116 , Células Hep G2 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Fosforilação
16.
JCI Insight ; 5(3)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32051343

RESUMO

SNAP23 is the ubiquitous SNAP25 isoform that mediates secretion in non-neuronal cells, similar to SNAP25 in neurons. However, some secretory cells like pancreatic islet ß cells contain an abundance of both SNAP25 and SNAP23, where SNAP23 is believed to play a redundant role to SNAP25. We show that SNAP23, when depleted in mouse ß cells in vivo and human ß cells (normal and type 2 diabetes [T2D] patients) in vitro, paradoxically increased biphasic glucose-stimulated insulin secretion corresponding to increased exocytosis of predocked and newcomer insulin granules. Such effects on T2D Goto-Kakizaki rats improved glucose homeostasis that was superior to conventional treatment with sulfonylurea glybenclamide. SNAP23, although fusion competent in slower secretory cells, in the context of ß cells acts as a weak partial fusion agonist or inhibitory SNARE. Here, SNAP23 depletion promotes SNAP25 to bind calcium channels more quickly and longer where granule fusion occurs to increase exocytosis efficiency. ß Cell SNAP23 antagonism is a strategy to treat diabetes.


Assuntos
Canais de Cálcio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Exocitose , Insulina/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Animais , Glucose/metabolismo , Homeostase , Humanos , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Ratos
17.
J Biol Chem ; 295(15): 4809-4821, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32075912

RESUMO

The liver maintains metabolic homeostasis by integrating the regulation of nutrient status with both hormonal and neural signals. Many studies on hepatic signaling in response to nutrients have been conducted in mice. However, no in-depth study is currently available that has investigated genome-wide changes in gene expression during the normal physiological fasting-feeding cycle in nutrient-sensitive and -insensitive mice. Using two strains of mice, C57BL/6J and BALB/cJ, and deploying deep RNA-Seq complemented with quantitative RT-PCR, we found that feeding causes substantial and transient changes in gene expression in the livers of both mouse strains. The majority of significantly changed transcripts fell within the areas of biological regulation and cellular and metabolic processes. Among the metabolisms of three major types of macronutrients (i.e. carbohydrates, proteins, and lipids), feeding affected lipid metabolism the most. We also noted that the C57BL/6J and BALB/cJ mice significantly differed in gene expression and in changes in gene expression in response to feeding. In both fasted and fed states, both mouse strains shared common expression patterns for about 10,200 genes, and an additional 400-600 genes were differentially regulated in one strain but not the other. Among the shared genes, more lipogenic genes were induced upon feeding in BABL/cJ than in C57BL/6J mice. In contrast, in the population of differentially enriched genes, C57BL/6J mice expressed more genes involved in lipid metabolism than BALB/cJ mice. In summary, these results reveal that the two mouse strains used here exhibit several differences in feeding-induced hepatic responses in gene expression, especially in lipogenic genes.


Assuntos
Biomarcadores/metabolismo , Ingestão de Alimentos , Jejum , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Fígado/metabolismo , Animais , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Especificidade da Espécie
18.
Molecules ; 25(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979355

RESUMO

Dapagliflozin, empagliflozin, tofogliflozin, selective inhibitors of sodium-glucose cotransporter 2 (SGLT2), is used clinically to reduce circulation glucose levels in patients with type 2 diabetes mellitus by blocking the reabsorption of glucose by the kidneys. Dapagliflozin is metabolized and inactivated by UGT1A9. Empagliflozin is metabolized and inactivated by UGT1A9 and by other related isoforms UGT2B7, UGT1A3, and UGT1A8. Tofogliflozin is metabolized and inactivated by five different enzymes CYP2C18, CYP3A4, CYP3A5, CYP4A11, and CYP4F3. Dapagliflozin treatment of HCT116 cells, which express SGLT2 but not UGT1A9, results in the loss of cell adhesion, whereas HepG2 cells, which express both SGLT2 and UGT1A9, are resistant to the adhesion-related effects of dapagliflozin. PANC-1 and H1792 cells, which do not express either SGLT2 or UGT1A9, are also resistant to adhesion related effects of dapagliflozin. On the other hand, either empagliflozin or tofogliflozin treatment of HCT116, HepG2, PANC-1, and H1792 cells are resistant to the adhesion-related effects as observed in dapagliflozin treated HCT116 cells. Knockdown of UGT1A9 by shRNA in HepG2 cells increased dapagliflozin sensitivity, whereas the overexpression of UGT1A9 in HCT116 cells protected against dapagliflozin-dependent loos of cell adhesion. Dapagliflozin treatment had no effect on cellular interactions with fibronectin, vitronectin, or laminin, but it induced a loss of interaction with collagen I and IV. In parallel, dapagliflozin treatment reduced protein levels of the full-length discoidin domain receptor I (DDR1), concomitant with appearance of DDR1 cleavage products and ectodomain shedding of DDR1. In line with these observations, unmetabolized dapagliflozin increased ADAM10 activity. Dapagliflozin treatment also significantly reduced Y792 tyrosine phosphorylation of DDR1 leading to decrement of DDR1 function and detachment of cancer cells. Concomitant with these lines of results, we experienced that CEA in patients with colon cancer, which express SGLT2 but not UGT1A9, and type 2 diabetes mellitus treated by dapagliflozin in addition to chemotherapy was decreased (case 1). CEA in patients with colon cancer, which express SGLT2 but not UGT1A9, and type 2 diabetes mellitus was treated by dapagliflozin alone after radiation therapy was decreased but started to rise after cessation of dapagliflozin (case 2). CA19-9 in two of patients with pancreatic cancer and type 2 diabetes mellitus was resistant to the combination therapy of dapagliflozin and chemotherapy (case 3 and 4 respectively). PIVKAII in patients with liver cancer and type 2 diabetes mellitus, and CYFRA in patients with squamous lung cancer and type 2 diabetes mellitus was also resistant the combination therapy of dapagliflozin and chemotherapy (case 5 and 6 respectively). Taken together, these data suggest a potential role for dapagliflozin anticancer therapy against colon cancer cells that express SGLT2, but not UGT1A9.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Antineoplásicos/farmacologia , Compostos Benzidrílicos/farmacologia , Adesão Celular/efeitos dos fármacos , Receptor com Domínio Discoidina 1/metabolismo , Glucosídeos/farmacologia , Proteínas de Membrana/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Antígeno Carcinoembrionário/metabolismo , Linhagem Celular Tumoral , Colágeno Tipo I/metabolismo , Colágeno Tipo IV/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Fibronectinas/metabolismo , Técnicas de Silenciamento de Genes , Glucuronosiltransferase/metabolismo , Humanos , Laminina/metabolismo , Fosforilação , RNA Interferente Pequeno , Vitronectina/metabolismo
19.
Physiol Behav ; 208: 112581, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31220516

RESUMO

FAM19A2/TAFA-2, a member of the chemokine CC family, shares 31% sequence identity with MIP-1α, which is known to elevate body temperature and reduce food intake. A single administration of 250 pM of FAM19A2/TAFA-2 to the third ventricle of mice just before the initiation of dark period increased food intake and meal number significantly, but reduced meal size during the dark period. The respiratory exchange rate and energy expenditure were increased significantly during the dark period, while the ambulatory count and vertical activity were not affected. These data suggest that FAM19A2/TAFA-2 participates in the regulation of food intake and metabolic activities.


Assuntos
Ativação Metabólica/fisiologia , Quimiocinas CC/fisiologia , Ingestão de Alimentos/fisiologia , Ativação Metabólica/efeitos dos fármacos , Animais , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Quimiocinas CC/administração & dosagem , Quimiocinas CC/farmacologia , Ritmo Circadiano , Ingestão de Alimentos/efeitos dos fármacos , Infusões Intraventriculares , Masculino , Camundongos
20.
J Biol Chem ; 294(23): 9076-9083, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31028171

RESUMO

The Mediator complex plays a critical role in the regulation of transcription by linking transcription factors to RNA polymerase II. By examining mouse livers, we have found that in the fasted state, the Mediator complex exists primarily as an approximately 1.2-MDa complex, consistent with the size of the large Mediator complex, whereas following feeding, it converts to an approximately 600-kDa complex, consistent with the size of the core Mediator complex. This dynamic change is due to the dissociation and degradation of the kinase module that includes the MED13, MED12, cyclin-dependent kinase 8 (CDK8), and cyclin C (CCNC) subunits. The dissociation and degradation of the kinase module are dependent upon nutrient activation of mTORC1 that is necessary for the induction of lipogenic gene expression because pharmacological or genetic inhibition of mTORC1 in the fed state restores the kinase module. The degradation but not dissociation of the kinase module depends upon the E3 ligase, SCFFBW7 In addition, genetically insulin-resistant and obese db/db mice in the fasted state displayed elevated lipogenic gene expression and loss of the kinase module that was reversed following mTORC1 inhibition. These data demonstrate that the assembly state of the Mediator complex undergoes physiologic regulation during normal cycles of fasting and feeding in the mouse liver. Furthermore, the assembly state of the Mediator complex is dysregulated in states of obesity and insulin resistance.


Assuntos
Resistência à Insulina , Complexo Mediador/metabolismo , Obesidade/patologia , Animais , Núcleo Celular/metabolismo , Ciclina C/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Fígado/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Nutrientes/administração & dosagem , Obesidade/metabolismo , Subunidades Proteicas/metabolismo , Proteínas Ligases SKP Culina F-Box/deficiência , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...