Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
FASEB J ; 35(6): e21654, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34042202

RESUMO

GPR37 is an orphan G protein-coupled receptor (GPCR) implicated in several neurological diseases and important physiological pathways in the brain. We previously reported that its long N-terminal ectodomain undergoes constitutive metalloprotease-mediated cleavage and shedding, which have been rarely described for class A GPCRs. Here, we demonstrate that the protease that cleaves GPR37 at Glu167↓Gln168 is a disintegrin and metalloprotease 10 (ADAM10). This was achieved by employing selective inhibition, RNAi-mediated downregulation, and genetic depletion of ADAM10 in cultured cells as well as in vitro cleavage of the purified receptor with recombinant ADAM10. In addition, the cleavage was restored in ADAM10 knockout cells by overexpression of the wild type but not the inactive mutant ADAM10. Finally, postnatal conditional depletion of ADAM10 in mouse neuronal cells was found to reduce cleavage of the endogenous receptor in the brain cortex and hippocampus, confirming the physiological relevance of ADAM10 as a GPR37 sheddase. Additionally, we discovered that the receptor is subject to another cleavage step in cultured cells. Using site-directed mutagenesis, the site (Arg54↓Asp55) was localized to a highly conserved region at the distal end of the ectodomain that contains a recognition site for the proprotein convertase furin. The cleavage by furin was confirmed by using furin-deficient human colon carcinoma LoVo cells and proprotein convertase inhibitors. GPR37 is thus the first multispanning membrane protein that has been validated as an ADAM10 substrate and the first GPCR that is processed by both furin and ADAM10. The unconventional N-terminal processing may represent an important regulatory element for GPR37.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Encéfalo/metabolismo , Furina/metabolismo , Proteínas de Membrana/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Proteína ADAM10/genética , Secretases da Proteína Precursora do Amiloide/genética , Animais , Furina/genética , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Domínios Proteicos
2.
Transl Neurodegener ; 10(1): 8, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637132

RESUMO

OBJECTIVE: α-Synuclein has been studied as a potential biomarker for Parkinson's disease (PD) with no concluding results. Accordingly, there is an urgent need to find out reliable specific biomarkers for PD. GPR37 is an orphan G protein-coupled receptor that toxically accumulates in autosomal recessive juvenile parkinsonism. Here, we investigated whether GPR37 is upregulated in sporadic PD, and thus a suitable potential biomarker for PD. METHODS: GPR37 protein density and mRNA expression in postmortem substantia nigra (SN) from PD patients were analysed by immunoblot and RT-qPCR, respectively. The presence of peptides from the N-terminus-cleaved domain of GPR37 (i.e. ecto-GPR37) in human cerebrospinal fluid (CSF) was determined by liquid chromatography-mass spectrometric analysis. An engineered in-house nanoluciferase-based immunoassay was used to quantify ecto-GPR37 in CSF samples from neurological control (NC) subjects, PD patients and Alzheimer's disease (AD) patients. RESULTS: GPR37 protein density and mRNA expression were significantly augmented in sporadic PD. Increased amounts of ecto-GPR37 peptides in the CSF samples from PD patients were identified by mass spectrometry and quantified by the in-house ELISA method. However, the CSF total α-synuclein level in PD patients did not differ from that in NC subjects. Similarly, the cortical GPR37 mRNA expression and CSF ecto-GPR37 levels in AD patients were also unaltered. CONCLUSION: GPR37 expression is increased in SN of sporadic PD patients. The ecto-GPR37 peptides are significantly increased in the CSF of PD patients, but not in AD patients. These results open perspectives and encourage further clinical studies to confirm the validity and utility of ecto-GPR37 as a potential PD biomarker.


Assuntos
Doença de Parkinson/diagnóstico , Receptores Acoplados a Proteínas G/análise , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/genética , Biomarcadores , Química Encefálica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/biossíntese , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/genética , Reprodutibilidade dos Testes , Substância Negra/metabolismo , Regulação para Cima , alfa-Sinucleína/líquido cefalorraquidiano
3.
ACS Pharmacol Transl Sci ; 3(2): 237-245, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32296765

RESUMO

Post-translational modifications (PTMs) are a fundamental phenomenon across all classes of life and several hundred different types have been identified. PTMs contribute widely to the biological functions of proteins and greatly increase their diversity. One important class of proteins regulated by PTMs, is the cell surface expressed G protein-coupled receptors (GPCRs). While most PTMs have been shown to exert distinct biological functions, we are only beginning to approach the complexity that the potential interplay between different PTMs may have on biological functions and their regulation. Importantly, PTMs and their potential interplay represent an appealing mechanism for cell and tissue specific regulation of GPCR function and may partially contribute to functional selectivity of some GPCRs. In this review we highlight examples of PTMs located in GPCR extracellular domains, with special focus on glycosylation and the potential interplay with other close-by PTMs such as tyrosine sulfation, proteolytic cleavage, and phosphorylation.

4.
Brain ; 143(4): 1114-1126, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32293671

RESUMO

Congenital disorders of glycosylation are a growing group of rare genetic disorders caused by deficient protein and lipid glycosylation. Here, we report the clinical, biochemical, and molecular features of seven patients from four families with GALNT2-congenital disorder of glycosylation (GALNT2-CDG), an O-linked glycosylation disorder. GALNT2 encodes the Golgi-localized polypeptide N-acetyl-d-galactosamine-transferase 2 isoenzyme. GALNT2 is widely expressed in most cell types and directs initiation of mucin-type protein O-glycosylation. All patients showed loss of O-glycosylation of apolipoprotein C-III, a non-redundant substrate for GALNT2. Patients with GALNT2-CDG generally exhibit a syndrome characterized by global developmental delay, intellectual disability with language deficit, autistic features, behavioural abnormalities, epilepsy, chronic insomnia, white matter changes on brain MRI, dysmorphic features, decreased stature, and decreased high density lipoprotein cholesterol levels. Rodent (mouse and rat) models of GALNT2-CDG recapitulated much of the human phenotype, including poor growth and neurodevelopmental abnormalities. In behavioural studies, GALNT2-CDG mice demonstrated cerebellar motor deficits, decreased sociability, and impaired sensory integration and processing. The multisystem nature of phenotypes in patients and rodent models of GALNT2-CDG suggest that there are multiple non-redundant protein substrates of GALNT2 in various tissues, including brain, which are critical to normal growth and development.


Assuntos
Apolipoproteína C-III/sangue , Deficiências do Desenvolvimento/genética , N-Acetilgalactosaminiltransferases/genética , Adolescente , Animais , Apolipoproteína C-III/genética , Criança , Pré-Escolar , Feminino , Glicosilação , Humanos , Mutação com Perda de Função , Masculino , Camundongos , Linhagem , Ratos , Adulto Jovem , Polipeptídeo N-Acetilgalactosaminiltransferase
5.
Biochem J ; 475(22): 3577-3593, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30327321

RESUMO

Collagen XVIII (ColXVIII) is a non-fibrillar collagen and proteoglycan that exists in three isoforms: short, medium and long. The medium and long isoforms contain a unique N-terminal domain of unknown function, DUF959, and our sequence-based secondary structure predictions indicated that DUF959 could be an intrinsically disordered domain. Recombinant DUF959 produced in mammalian cells consisted of ∼50% glycans and had a molecular mass of 63 kDa. Circular dichroism spectroscopy confirmed the disordered character of DUF959, and static light scattering indicated a monomeric state for glycosylated DUF959 in solution. Small-angle X-ray scattering showed DUF959 to be a highly extended, flexible molecule with a maximum dimension of ∼23 nm. Glycosidase treatment demonstrated considerable amounts of O-glycosylation, and expression of DUF959 in HEK293 SimpleCells capable of synthesizing only truncated O-glycans confirmed the presence of N-acetylgalactosamine-type O-glycans. The DUF959 sequence is characterized by numerous Ser and Thr residues, and this accounts for the finding that half of the recombinant protein consists of glycans. Thus, the medium and long ColXVIII isoforms contain at their extreme N-terminus a disordered, elongated and highly O-glycosylated mucin-like domain that is not found in other collagens, and we suggest naming it the Mucin-like domain in ColXVIII (MUCL-C18). As intrinsically disordered regions and their post-translational modifications are often involved in protein interactions, our findings may point towards a role of the flexible mucin-like domain of ColXVIII as an interaction hub affecting cell signaling. Moreover, the MUCL-C18 may also serve as a lubricant at cell-extracellular matrix interfaces.


Assuntos
Colágeno Tipo XVIII/química , Colágeno Tipo XVIII/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Colágeno Tipo XVIII/genética , Glicosilação , Células HEK293 , Humanos , Camundongos , Polissacarídeos/química , Polissacarídeos/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Difração de Raios X
6.
Cell Signal ; 42: 184-193, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29097258

RESUMO

G protein-coupled receptors (GPCRs) are an important protein family of signalling receptors that govern a wide variety of physiological functions. The capacity to transmit extracellular signals and the extent of cellular response are largely determined by the amount of functional receptors at the cell surface that is subject to complex and fine-tuned regulation. Here, we demonstrate that the cell surface expression level of an inhibitory GPCR, the human δ-opioid receptor (hδOR) involved in pain and mood regulation, is modulated by site-specific N-acetylgalactosamine (GalNAc) -type O-glycosylation. Importantly, we identified one out of the 20 polypeptide GalNAc-transferase isoforms, GalNAc-T2, as the specific regulator of O-glycosylation of Ser6, Ser25 and Ser29 in the N-terminal ectodomain of the receptor. This was demonstrated by in vitro glycosylation assays using peptides corresponding to the hδOR N-terminus, Vicia villosa lectin affinity purification of receptors expressed in HEK293 SimpleCells capable of synthesizing only truncated O-glycans, GalNAc-T edited cell line model systems, and site-directed mutagenesis of the putative O-glycosylation sites. Interestingly, a single-nucleotide polymorphism, at residue 27 (F27C), was found to alter O-glycosylation of the receptor in efficiency as well as in glycosite usage. Furthermore, flow cytometry and cell surface biotinylation assays using O-glycan deficient CHO-ldlD cells revealed that the absence of O-glycans results in decreased receptor levels at the plasma membrane due to enhanced turnover. In addition, mutation of the identified O-glycosylation sites led to a decrease in the number of ligand-binding competent receptors and impaired agonist-mediated inhibition of cyclic AMP accumulation in HEK293 cells. Thus, site-specific O-glycosylation by a selected GalNAc-T isoform can increase the stability of a GPCR, in a process that modulates the constitutive turnover and steady-state levels of functional receptors at the cell surface.


Assuntos
Acetilgalactosamina/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Receptores Opioides delta/química , Proteínas Recombinantes de Fusão/química , Serina/metabolismo , Acetilgalactosamina/química , Sequência de Aminoácidos , Animais , Células CHO , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Cromatografia de Afinidade/métodos , Cricetulus , AMP Cíclico/metabolismo , Glicosilação , Células HEK293 , Células Hep G2 , Humanos , Mutagênese Sítio-Dirigida , N-Acetilgalactosaminiltransferases/genética , Neurônios/citologia , Neurônios/metabolismo , Peptídeos/síntese química , Peptídeos/metabolismo , Lectinas de Plantas/química , Polimorfismo de Nucleotídeo Único , Estabilidade Proteica , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Polipeptídeo N-Acetilgalactosaminiltransferase
7.
J Biol Chem ; 292(11): 4714-4726, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28167537

RESUMO

The ß1-adrenergic receptor (ß1AR) is a G protein-coupled receptor (GPCR) and the predominant adrenergic receptor subtype in the heart, where it mediates cardiac contractility and the force of contraction. Although it is the most important target for ß-adrenergic antagonists, such as ß-blockers, relatively little is yet known about its regulation. We have shown previously that ß1AR undergoes constitutive and regulated N-terminal cleavage participating in receptor down-regulation and, moreover, that the receptor is modified by O-glycosylation. Here we demonstrate that the polypeptide GalNAc-transferase 2 (GalNAc-T2) specifically O-glycosylates ß1AR at five residues in the extracellular N terminus, including the Ser-49 residue at the location of the common S49G single-nucleotide polymorphism. Using in vitro O-glycosylation and proteolytic cleavage assays, a cell line deficient in O-glycosylation, GalNAc-T-edited cell line model systems, and a GalNAc-T2 knock-out rat model, we show that GalNAc-T2 co-regulates the metalloproteinase-mediated limited proteolysis of ß1AR. Furthermore, we demonstrate that impaired O-glycosylation and enhanced proteolysis lead to attenuated receptor signaling, because the maximal response elicited by the ßAR agonist isoproterenol and its potency in a cAMP accumulation assay were decreased in HEK293 cells lacking GalNAc-T2. Our findings reveal, for the first time, a GPCR as a target for co-regulatory functions of site-specific O-glycosylation mediated by a unique GalNAc-T isoform. The results provide a new level of ß1AR regulation that may open up possibilities for new therapeutic strategies for cardiovascular diseases.


Assuntos
N-Acetilgalactosaminiltransferases/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Sequência de Aminoácidos , Animais , Técnicas de Inativação de Genes , Glicosilação , Células HEK293 , Células Hep G2 , Humanos , N-Acetilgalactosaminiltransferases/química , N-Acetilgalactosaminiltransferases/genética , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteólise , Ratos , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/genética , Polipeptídeo N-Acetilgalactosaminiltransferase
8.
J Cell Sci ; 129(7): 1366-77, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26869225

RESUMO

The G-protein-coupled receptor 37 ( GPR37) has been implicated in the juvenile form of Parkinson's disease, in dopamine signalling and in the survival of dopaminergic cells in animal models. The structure and function of the receptor, however, have remained enigmatic. Here, we demonstrate that although GPR37 matures and is exported from the endoplasmic reticulum in a normal manner upon heterologous expression in HEK293 and SH-SY5Y cells, its long extracellular N-terminus is subject to metalloproteinase-mediated limited proteolysis between E167 and Q168. The proteolytic processing is a rapid and efficient process that occurs constitutively. Moreover, the GPR37 ectodomain is released from cells by shedding, a phenomenon rarely described for GPCRs. Immunofluorescence microscopy further established that although full-length receptors are present in the secretory pathway until the trans-Golgi network, GPR37 is expressed at the cell surface predominantly in the N-terminally truncated form. This notion was verified by flow cytometry and cell surface biotinylation assays. These new findings on the GPR37 N-terminal limited proteolysis may help us to understand the role of this GPCR in the pathophysiology of Parkinson's disease and in neuronal function in general.


Assuntos
Metaloproteases/metabolismo , Doença de Parkinson/patologia , Proteólise , Receptores Acoplados a Proteínas G/metabolismo , Linhagem Celular , Dipeptídeos/farmacologia , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Metaloproteases/antagonistas & inibidores , Estrutura Terciária de Proteína
9.
Basic Res Cardiol ; 111(1): 2, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26611206

RESUMO

The G protein-coupled apelin receptor regulates important processes of the cardiovascular homeostasis, including cardiac development, cardiac contractility, and vascular tone. Most recently, a novel endogenous peptide ligand for the apelin receptor was identified in zebrafish, and it was named apela/elabela/toddler. The peptide was originally considered as an exclusively embryonic regulator, and so far its function in the adult organism remains elusive. We show here that apela is predominantly expressed in the non-cardiomyocyte fraction in the adult rodent heart. We also provide evidence that apela binds to apelin receptors in the heart. Using isolated adult rat hearts, we demonstrate, that just like the fellow receptor agonist apelin, apela increases cardiac contractility and induces coronary vasodilation already in the nanomolar level. The inotropic effect, as revealed by Western blot analysis, is accompanied by a significant increase in extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. Pharmacological inhibition of ERK1/2 activation markedly attenuates the apela-induced inotropy. Analysis of samples from infarcted mouse hearts showed that expression of both apela and apelin receptor is induced in failing mouse hearts and correlate with left ventricular ejection fraction. Hence, we conclude that apela is present in the adult heart, is upregulated in post-infarction cardiac remodeling, and increases cardiac contractility in an ERK1/2-dependent manner.


Assuntos
Coração , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Miocárdio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Envelhecimento , Animais , Receptores de Apelina , Western Blotting , Modelos Animais de Doenças , Masculino , Camundongos , Infarto do Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia
10.
J Alzheimers Dis ; 48(2): 507-16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26402014

RESUMO

The agonist-induced activation of human δ-opioid receptor (δOR) has been shown to increase ß- (BACE1) and γ-secretase activities leading to increased production of amyloid-ß (Aß) peptide. We have recently shown that phenylalanine to cysteine substitution at amino acid 27 in δOR (δOR-Phe27Cys) increases amyloid-ß protein precursor processing through altered endocytic trafficking. Also, a genetic meta-analysis of the δOR-Phe27Cys variation (rs1042114) in two independent Alzheimer's disease (AD) patient cohorts indicated that the heterozygosity of δOR-Phe27Cys increases the risk of AD. Here, we investigated α-, ß-, and γ-secretase activities in human brain with respect to δOR-Phe27Cys variation in the temporal cortex of 71 subjects with varying degree of AD-related neurofibrillary pathology (Braak stages I-VI). As a result, a significant increase in ß- (p = 0.03) and γ- (p = 0.01), but not α-secretase, activities was observed in late stage AD samples (Braak stages V-VI), which were heterozygous for δOR-Phe27Cys as compared to the δOR-Phe27 and δOR-Cys27 homozygotes. The augmented ß-secretase activity was not associated with increased mRNA expression or protein levels of BACE1 in the late stage AD patients, who were heterozygous for the δOR-Phe27Cys variation. These findings suggest that δOR-Phe27Cys variation modulates ß- and γ-secretase activity in the late stages of AD likely via post-translational mechanisms other than alterations in the mRNA or protein levels of BACE1, or, in the expression of γ-secretase complex components.


Assuntos
Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Variação Genética , Proteínas de Membrana/metabolismo , Receptores Opioides delta/genética , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Doença Crônica , Feminino , Humanos , Masculino , Emaranhados Neurofibrilares/enzimologia , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/patologia , Fragmentos de Peptídeos/metabolismo , RNA Mensageiro/metabolismo , Lobo Temporal/enzimologia , Lobo Temporal/patologia
11.
J Biol Chem ; 289(25): 17830-42, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24798333

RESUMO

Quality control (QC) in the endoplasmic reticulum (ER) scrutinizes newly synthesized proteins and directs them either to ER export or ER-associated degradation (ERAD). Here, we demonstrate that the human δ-opioid receptor (hδOR) is subjected to ERQC in both N-glycan-dependent and -independent manners. This was shown by investigating the biosynthesis and trafficking of wild-type and non-N-glycosylated F27C variants in metabolic pulse-chase assays coupled with flow cytometry and cell surface biotinylation. Both QC mechanisms distinguished the minute one-amino acid difference between the variants, targeting a large fraction of hδOR-Cys(27) to ERAD. However, the N-glycan-independent QC was unable to compensate the N-glycan-dependent pathway, and some incompletely folded non-N-glycosylated hδOR-Cys(27) reached the cell surface in conformation incompatible with ligand binding. The turnover of receptors associating with the molecular chaperone calnexin (CNX) was significantly slower for the hδOR-Cys(27), pointing to an important role of CNX in the hδOR N-glycan-dependent QC. This was further supported by the fact that inhibiting the co-translational interaction of hδOR-Cys(27) precursors with CNX led to their ERAD. Opioid receptor pharmacological chaperones released the CNX-bound receptors to ER export and, furthermore, were able to rescue the Cys(27) variant from polyubiquitination and retrotranslocation to the cytosol whether carrying N-glycans or not. Taken together, the hδOR appears to rely primarily on the CNX-mediated N-glycan-dependent QC that has the capacity to assist in folding, whereas the N-glycan-independent mechanism constitutes an alternative, although less accurate, system for directing misfolded/incompletely folded receptors to ERAD, possibly in altered cellular conditions.


Assuntos
Calnexina/metabolismo , Degradação Associada com o Retículo Endoplasmático/fisiologia , Polissacarídeos/metabolismo , Dobramento de Proteína , Proteólise , Receptores Opioides delta/metabolismo , Células HEK293 , Humanos , Polissacarídeos/genética , Estrutura Terciária de Proteína , Receptores Opioides delta/genética , Ubiquitinação/fisiologia
12.
Pharmacol Res ; 83: 52-62, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24355364

RESUMO

G protein-coupled receptors (GPCRs) are polytopic membrane proteins that have a pivotal role in cellular signaling. Like other membrane proteins, they fold in the endoplasmic reticulum (ER) before they are transported to the plasma membrane. The ER quality control monitors the folding process and misfolded proteins and slowly folding intermediates are targeted to degradation in the cytosol via the ubiquitin-proteasome pathway. The high efficiency of the quality control machinery may lead to the disposal of potentially functional receptors. This is the major underlying course for loss-of-function conformational diseases, such as retinitis pigmentosa, nephrogenic diabetes insipidus and early onset obesity, which involve mutant GPCRs. During the past decade, it has become increasingly evident that small-molecular lipophilic and pharmacologically selective receptor ligands, called pharmacological chaperones (PCs), can rescue these mutant receptors from degradation by stabilizing newly synthesized receptors in the ER and enhancing their transport to the cell surface. This has raised the interesting prospect that PCs might have therapeutic value for the treatment of conformational diseases. At the same time, accumulating evidence has indicated that wild-type receptors might also be targeted by PCs, widening their therapeutic potential. This review focuses on one GPCR subfamily, opioid receptors that have been useful models to unravel the mechanism of action of PCs. In contrast to most other GPCRs, compounds that act as PCs for opioid receptors, including widely used opioid drugs, target wild-type receptors and their common natural variants.


Assuntos
Descoberta de Drogas , Dobramento de Proteína/efeitos dos fármacos , Receptores Opioides/metabolismo , Animais , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Ligantes , Modelos Moleculares , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Receptores Opioides/análise
13.
Pediatr Res ; 74(6): 646-51, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24002332

RESUMO

BACKGROUND: Surfactant protein B (SP-B) is essential for normal lung function, and decreased concentrations of SP-B have a deleterious effect on pulmonary outcome. SP-B levels may correlate with variations in the encoding gene (SFTPB). SFTPB single-nucleotide polymorphism Ile131Thr affects proSP-B N-glycosylation in humans and the glycosylated Thr variant associates with pulmonary diseases. METHODS: We analyzed SP-B levels in amniotic fluid samples for associations with SFTPB polymorphisms and generated cell lines expressing either proSP-B/131Ile or proSP-B/131Thr for examining the effect of glycosylation on proSP-B secretion kinetics. To determine any transcription preference between Ile131Thr allelic variants, we used heterozygous human lungs for allelic expression imbalance assays. RESULTS: Protein levels correlated with Ile131Thr genotype and the lowest SP-B levels were observed in Thr/Thr homozygotes. Our results suggest that Ile131Thr variation-dependent N-glycosylation associates with decreased levels of SP-B, which is secreted from fetal lung to amniotic fluid. Glycosylated proSP-B/131Thr was secreted from transfected cells at a lower rate than nonglycosylated proSP-B/131Ile. Expression levels of the mRNA variants were equal. Secretion of the glycosylated variant was thus delayed in vitro by a posttranscriptional mechanism. CONCLUSION: These data support the hypothesis that proSP-B glycosylation due to Ile131Thr variation may have a causal role in genetic susceptibility to acute respiratory distress.


Assuntos
Alelos , Proteína B Associada a Surfactante Pulmonar/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Glicosilação , Humanos , Isoleucina/metabolismo , Polimorfismo de Nucleotídeo Único , Proteína B Associada a Surfactante Pulmonar/genética , Treonina/metabolismo
14.
Analyst ; 138(17): 4907-14, 2013 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23800721

RESUMO

This study, a homogeneous assay system for delta opioid receptor binding ligands has been developed using Quenching Resonance Energy Transfer (QRET). The QRET system allows receptor-ligand binding assays on intact cells using a single-label approach and a nonspecific quenching mechanism. Binding of antagonists or agonists to the receptor can be defined using a europium(III) labeled ligand. In the presence of the unlabeled ligand the labeled ligand is displaced and remains in solution. The non-bound labeled ligand is not protected by the target receptor, and the luminescence signal is quenched. For this objective, a Eu(III) labeled peptide molecule with three different linkers (AX0, AX1 and AX2) was designed. Peptides were evaluated using the homogeneous QRET technique, radioligand binding assays and the heterogeneous time-resolved luminescence (TRL) technique. Using the Eu-AX0 peptide and the QRET method, a panel of opioid compounds (naltrexone, naltrindole, SCN-80, DPDPE and DAMGO) was tested to prove the assay performance. The signal-to-background ratio for the tested opioid ligand ranged from 3.3 to 12.0. The QRET method showed prominent performance also in high DMSO concentrations. QRET is a homogenous and a non-radioactive detection system for screening and this is the first attempt to utilize peptide ligands in the QRET concept.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Receptores Opioides delta/metabolismo , Coloração e Rotulagem , Contagem de Células , Dimetil Sulfóxido/química , Európio/química , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Conformação Proteica , Receptores Opioides delta/química
15.
Mol Pharmacol ; 83(1): 129-41, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23066091

RESUMO

The ß(1)-adrenergic receptor (ß(1)AR) is the predominant ßAR in the heart and is the main target for ß-adrenergic antagonists, widely used in the treatment of cardiovascular diseases. Previously, we have shown that the human (h) ß(1)AR is cleaved in its N terminus by a metalloproteinase, both constitutively and in a receptor activation-dependent manner. In this study, we investigated the specific events involved in ß(1)AR regulation, focusing on the effects of long-term treatment with ß-adrenergic ligands on receptor processing in stably transfected human embryonic kidney 293(i) cells. The key findings were verified using the transiently transfected hß(1)AR and the endogenously expressed receptor in neonatal rat cardiomyocytes. By using flow cytometry and Western blotting, we demonstrated that isoproterenol, S-propranolol, CGP-12177 [4-[3-[(1,1-dimethylethyl)amino]2-hydroxypropoxy]-1,3-dihydro-2H-benzimidazol-2-one], pindolol, and timolol, which displayed agonistic properties toward the ß(1)AR in either the adenylyl cyclase or the mitogen-activated protein kinase signaling pathways, induced cleavage of the mature cell-surface receptor. In contrast, metoprolol, bisoprolol, and CGP-20712 [1-[2-((3-carbamoyl-4-hydroxy)phenoxy)ethylamino]-3-[4-(1-methyl-4-trifluoromethyl-2-imidazolyl)phenoxy]-2-propanol], which showed no agonistic activity, had only a marginal or no effect. Importantly, the agonists also stabilized intracellular receptor precursors, possibly via their pharmacological chaperone action, and they stabilized the receptor in vitro. The opposing effects on the two receptor forms thus led to an increase in the amount of cleaved receptor fragments at the plasma membrane. The results underscore the pluridimensionality of ß-adrenergic ligands and extend this property from receptor activation and signaling to the regulation of ß(1)AR levels. This phenomenon may contribute to the exceptional resistance of ß(1)ARs to downregulation and tendency toward upregulation following long-term ligand treatments.


Assuntos
Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Receptores Adrenérgicos beta 1/metabolismo , Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Animais , Animais Recém-Nascidos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , AMP Cíclico/biossíntese , Células HEK293 , Humanos , Ligantes , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Estabilidade Proteica , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta 1/genética , Transdução de Sinais , Transfecção , Regulação para Cima
16.
J Biol Chem ; 287(7): 5008-20, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22184124

RESUMO

The important role of G protein-coupled receptor homo/heteromerization in receptor folding, maturation, trafficking, and cell surface expression has become increasingly evident. Here we investigated whether the human δ-opioid receptor (hδOR) Cys-27 variant that shows inherent compromised maturation has an effect on the behavior of the more common Phe-27 variant in the early secretory pathway. We demonstrate that hδOR-Cys-27 acts in a dominant negative manner and impairs cell surface delivery of the co-expressed hδOR-Phe-27 and impairs conversion of precursors to the mature form. This was demonstrated by metabolic labeling, Western blotting, flow cytometry, and confocal microscopy in HEK293 and human SH-SY5Y neuroblastoma cells using differentially epitope-tagged variants. The hδOR-Phe-27 precursors that were redirected to the endoplasmic reticulum-associated degradation were, however, rescued by a pharmacological chaperone, the opioid antagonist naltrexone. Co-immunoprecipitation of metabolically labeled variants revealed that both endoplasmic reticulum-localized precursors and mature receptors exist as homo/heteromers. The existence of homo/heteromers was confirmed in living cells by bioluminescence resonance energy transfer measurements, showing that the variants have a similar propensity to form homo/heteromers. By forming both homomers and heteromers, the hδOR-Cys-27 variant may thus regulate the levels of receptors at the cell surface, possibly leading to altered responsiveness to opioid ligands in individuals carrying the Cys-27 variant.


Assuntos
Multimerização Proteica/fisiologia , Precursores de Proteínas/metabolismo , Receptores Opioides delta/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Fenilalanina/genética , Fenilalanina/metabolismo , Multimerização Proteica/efeitos dos fármacos , Precursores de Proteínas/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Proteólise/efeitos dos fármacos , Receptores Opioides delta/genética
17.
Mol Cell Biol ; 31(11): 2326-40, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21464208

RESUMO

Agonist-induced activation of the δ-opioid receptor (δOR) was recently shown to augment ß- and γ-secretase activities, which increased the production of ß-amyloid peptide (Aß), known to accumulate in the brain tissues of Alzheimer's disease (AD) patients. Previously, the δOR variant with a phenylalanine at position 27 (δOR-Phe27) exhibited more efficient receptor maturation and higher stability at the cell surface than did the less common cysteine (δOR-Cys27) variant. For this study, we expressed these variants in human SH-SY5Y and HEK293 cells expressing exogenous or endogenous amyloid precursor protein (APP) and assessed the effects on APP processing. Expression of δOR-Cys27, but not δOR-Phe27, resulted in a robust accumulation of the APP C83 C-terminal fragment and the APP intracellular domain, while the total soluble APP and, particularly, the ß-amyloid 40 levels were decreased. These changes upon δOR-Cys27 expression coincided with decreased localization of APP C-terminal fragments in late endosomes and lysosomes. Importantly, a long-term treatment with a subset of δOR-specific ligands or a c-Src tyrosine kinase inhibitor suppressed the δOR-Cys27-induced APP phenotype. These data suggest that an increased constitutive internalization and/or concurrent signaling of the δOR-Cys27 variant affects APP processing through altered endocytic trafficking of APP.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Endocitose , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismo , Doença de Alzheimer/metabolismo , Substituição de Aminoácidos , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Western Blotting , Citometria de Fluxo , Células HEK293 , Humanos , Imunoprecipitação , Mutação , Polimorfismo de Nucleotídeo Único , Processamento de Proteína Pós-Traducional , Transporte Proteico , Receptores Opioides delta/química , Transdução de Sinais
18.
J Biomol Screen ; 16(3): 356-62, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21343601

RESUMO

G-protein-coupled receptors (GPCRs) are an important class of pharmaceutical drug targets. Functional high-throughput GPCR assays are needed to test an increasing number of synthesized novel drug compounds and their function in signal transduction processes. Measurement of changes in the cyclic adenosine monophosphate (cAMP) concentration is a widely used method to verify GPCR activation in the adenylyl cyclase pathway. Here, a single-label time-resolved fluorescence and high-throughput screening (HTS)-feasible method was developed to measure changes in cAMP levels in HEK293(i) cells overexpressing either ß(2)-adrenergic or δ-opioid receptors. In the quenching resonance energy transfer (QRET) technique, soluble quenchers reduce the signal of unbound europium(III)-labeled cAMP in solution, whereas the antibody-bound fraction is fluorescent. The feasibility of this homogeneous competitive assay was proven by agonist-mediated stimulation of receptors coupled to either the stimulatory G(s) or inhibitory G(i) proteins. The reproducibility of the assays was excellent, and Z' values exceeded 0.7. The dynamic range, signal-to-background ratio, and detection limit were compared with a commercial time-resolved fluorescence resonance energy transfer (TR-FRET) assay. In both homogeneous assays, similar assay parameters were obtained when adenylyl cyclase was stimulated directly by forskolin or via agonist-mediated activation of the G(s)-coupled ß(2)AR. The advantage of using the single-label approach relates to the cost-effectiveness of the QRET system compared with the two-label TR-FRET assay as there is no need for labeling of two binding partners leading to reduced requirements for assay optimization.


Assuntos
Bioquímica/métodos , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Contagem de Células/normas , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Projetos de Pesquisa
19.
Mol Cell Biochem ; 351(1-2): 173-81, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21234650

RESUMO

A quarter of the human population with European background carries at least one allele of the OPRD1 gene that encodes the delta opioid receptor with cysteine at the amino acid position 27 (hδOR(Cys27)) instead of the evolutionary conserved phenylalanine (hδOR(Phe27)). The two variants have indistinguishable pharmacological properties but, importantly, hδOR(Cys27) differs from hδOR(Phe27) in having low maturation efficiency, lower stability at the cell surface and pronounced intracellular location. Both variants were previously shown to interact with the Sarco(endo)plasmic reticulum Ca²+ ATPase (SERCA) 2b in the early phase of their biosynthesis. We analyzed by pulse-chase assays, whether cellular signaling can affect hδOR(Cys27) maturation. Neither activation of the receptor by a δOR-specific agonist Leu-enkephalin, induction of intracellular calcium (Ca²+) release by ATP nor the direct stimulation of SERCA 2b by protein kinase C activation affected receptor maturation in HEK-293 cells. No signaling-mediated regulation of receptor maturation could therefore be demonstrated. Instead, we found by using single cell Ca²+ measurements that over-expression of hδOR(Cys27), but not hδOR(Phe27), compromised ATP-induced intracellular Ca²+-signaling. Furthermore, hδOR(Cys27) precursors showed slower dissociation from SERCA2b and hδOR(Cys27) expression caused down-regulation of the homocysteine-inducible endoplasmic reticulum-resident ubiquitin domain-like member 1 protein (HERP). We suggest that aging individuals with at least one hδOR(Cys27) encoding allele might have lowered threshold for Ca²+ dysregulation in neurons expressing hδOR.


Assuntos
Sinalização do Cálcio/genética , Cisteína/genética , Fenilalanina/genética , Polimorfismo Genético , Receptores Opioides delta/genética , Trifosfato de Adenosina/metabolismo , Western Blotting , Linhagem Celular , Ativação Enzimática , Humanos , Proteína Quinase C/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
20.
Cardiovasc Diabetol ; 9: 42, 2010 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-20731869

RESUMO

BACKGROUND: The beta-1 adrenergic receptor (beta1AR) plays a fundamental role in the regulation of cardiovascular functions. It carries a nonsynonymous single nucleotide polymorphism in its carboxyl terminal tail (Arg389Gly), which has been shown to associate with various echocardiographic parameters linked to left ventricular hypertrophy (LVH). Diabetes mellitus (DM), on the other hand, represents a risk factor for LVH. We investigated the possible association between the Arg389Gly polymorphism and LVH among non-diabetic and diabetic acute myocardial infarction (AMI) survivors. METHODS: The study population consisted of 452 AMI survivors, 20.6% of whom had diagnosed DM. Left ventricular parameters were measured with two-dimensional guided M-mode echocardiography 2-7 days after AMI, and the Arg389Gly polymorphism was determined using a polymerase chain reaction-restriction fragment length polymorphism assay. RESULTS: The Arg389 homozygotes in the whole study population had a significantly increased left ventricular mass index (LVMI) when compared to the Gly389 carriers (either Gly389 homozygotes or Arg389/Gly389 heterozygotes) [62.7 vs. 58.4, respectively (p = 0.023)]. In particular, the Arg389 homozygotes displayed thicker diastolic interventricular septal (IVSd) measures when compared to the Gly389 carriers [13.2 vs. 12.3 mm, respectively (p = 0.004)]. When the euglycemic and diabetic patients were analyzed separately, the latter had significantly increased LVMI and diastolic left ventricular posterior wall (LVPWd) values compared to the euglycemic patients [LVMI = 69.1 vs. 58.8 (p = 0.001) and LVPWd = 14.2 vs. 12.3 mm (p < 0.001), respectively]. Furthermore, among the euglycemic patients, the Arg389 homozygotes displayed increased LVMI and IVSd values compared to the Gly389 carriers [LVMI = 60.6 vs. 56.3, respectively (p = 0.028) and IVSd = 13.1 vs. 12.0 mm, respectively (p = 0.001)]. There was no difference in the LVMI and IVSd values between the diabetic Arg389 homozygotes and Gly389 carriers. CONCLUSIONS: The data suggest an association between the beta1AR Arg389Gly polymorphism and LVH, particularly the septal hypertrophy. The Arg389 variant appears to confer a higher risk of developing LVH than the corresponding Gly389 variant among patients who have suffered AMI. This association cannot be considered to be universal, however, since it does not appear to exist among diabetic AMI survivors.


Assuntos
Complicações do Diabetes/genética , Hipertrofia Ventricular Esquerda/genética , Infarto do Miocárdio/genética , Receptores Adrenérgicos beta 1/genética , Idoso , Complicações do Diabetes/mortalidade , Ecocardiografia Doppler , Feminino , Variação Genética , Genótipo , Humanos , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/mortalidade , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/mortalidade , Polimorfismo Genético , Estrutura Terciária de Proteína , Receptores Adrenérgicos beta 1/química , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...