Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 21(8): 1667-1673, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36345797

RESUMO

The total synthesis of Resolvin D4 and its 17(R)-hydroxy-epimer is reported. These lipid-based natural products are biosynthesized from docosahexaenoic acid (DHA, C22:6) during the body's rapid cellular and chemical response to injurious stimuli and are part of a large class of bioactive molecules that resolve inflammation. Our convergent synthesis employed a chiral pool strategy starting from glycidol derivatives and D-erythrose to introduce stereogenic centers. A copper(I)-mediated cross coupling between propargyl bromide and terminal acetylenic precursors yielded core structures of late-stage key intermediates. A simultaneous Lindlar reduction of the skipped diynyl moiety followed by silyl group cleavage securely completed the synthesis. The synthetic availability of these molecules helped further elucidate their stereoselective biofunctions.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácidos Graxos Insaturados , Humanos , Ácidos Graxos Insaturados/química , Inflamação , Estereoisomerismo
2.
J Stroke Cerebrovasc Dis ; 31(8): 106585, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35717719

RESUMO

OBJECTIVE: We tested the hypothesis that blocking pro-inflammatory platelet-activating factor receptor (PAFR) with LAU-0901 (LAU) plus administering a selected docosanoid, aspirin-triggered neuroprotectin D1 (AT-NPD1), which activates cell-survival pathways after middle cerebral artery occlusion (MCAo), would lead to neurological recovery. Dose-response and therapeutic window were investigated. MATERIALS AND METHODS: Male SD rats were subjected to 2 hours of MCAo. Behavior testing (days 1-7) and ex vivo MRI on day 7 were conducted. In dose-response, rats were treated with LAU (45 and 60 mg/kg; IP), AT-NPD1 (111, 222, 333 µg/kg; IV), LAU+AT-NPD1 (LAU at 3 hours and AT-NPD1 at 3.15 hours) or vehicle. In the therapeutic window, vehicle, LAU (60 mg/kg), AT-NPD1 (222 µg/kg), and LAU+AT-NPD1 were administered at 3, 4, 5, and 6 hours after onset of MCAo. RESULTS: LAU and AT-NPD1 treatments alone improved behavior by 40-42% and 20-30%, respectively, and LAU+AT-NPD1 by 40% compared to the vehicle group. T2-weighted imaging (T2WI) volumes were reduced with all doses of LAU and AT-NPD1 by 73-90% and 67-83% and LAU+AT-NPD1 by 94% compared to vehicle. In the therapeutic window, LAU+AT-NPD1, when administered at 3, 4, 5, and 6 hours, improved behavior by 50, 56, 33, and 26% and reduced T2WI volumes by 93, 90, 82, and 84% compared to vehicle. CONCLUSIONS: We have shown here for the first time that LAU plus AT-NPD1 treatment affords high-grade neuroprotection in MCAo, equaling or exceeding that afforded by LAU or AT-NPD1 alone at considerably moderate doses. It has a broad therapeutic window extending to 6 hours after stroke onset.


Assuntos
AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Animais , Aspirina/uso terapêutico , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/tratamento farmacológico , Masculino , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia
3.
RSC Adv ; 12(19): 11613-11618, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35481084

RESUMO

The first total convergent synthesis of 4(S),5(S)-oxido-17(S)-hydroxy-6(E),8(E),10(Z),13(Z),15(E),19(Z)-docosahexaenoic acid (1) is described. The reported synthesis led to confirmation of the native epoxydocosahexaenoic acid as the biosynthetic precursor of lipid mediators resolvin D3 and resolvin D4. These potent enzymatic products of docosahexaenoic acid (DHA) are important signaling molecules in the resolution of inflammation. A stereocontrolled and chiral pool-based synthetic strategy was employed, with key features including epoxide transposition under basic conditions to form the oxirane ring, and a cis-selective Wittig reaction to secure the target docosahexaenoate backbone.

4.
Nature ; 601(7893): 452-459, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34912117

RESUMO

Structure-based virtual ligand screening is emerging as a key paradigm for early drug discovery owing to the availability of high-resolution target structures1-4 and ultra-large libraries of virtual compounds5,6. However, to keep pace with the rapid growth of virtual libraries, such as readily available for synthesis (REAL) combinatorial libraries7, new approaches to compound screening are needed8,9. Here we introduce a modular synthon-based approach-V-SYNTHES-to perform hierarchical structure-based screening of a REAL Space library of more than 11 billion compounds. V-SYNTHES first identifies the best scaffold-synthon combinations as seeds suitable for further growth, and then iteratively elaborates these seeds to select complete molecules with the best docking scores. This hierarchical combinatorial approach enables the rapid detection of the best-scoring compounds in the gigascale chemical space while performing docking of only a small fraction (<0.1%) of the library compounds. Chemical synthesis and experimental testing of novel cannabinoid antagonists predicted by V-SYNTHES demonstrated a 33% hit rate, including 14 submicromolar ligands, substantially improving over a standard virtual screening of the Enamine REAL diversity subset, which required approximately 100 times more computational resources. Synthesis of selected analogues of the best hits further improved potencies and affinities (best inhibitory constant (Ki) = 0.9 nM) and CB2/CB1 selectivity (50-200-fold). V-SYNTHES was also tested on a kinase target, ROCK1, further supporting its use for lead discovery. The approach is easily scalable for the rapid growth of combinatorial libraries and potentially adaptable to any docking algorithm.


Assuntos
Algoritmos , Técnicas de Química Combinatória , Descoberta de Drogas , Bibliotecas Digitais , Ligantes , Simulação de Acoplamento Molecular , Quinases Associadas a rho
5.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911767

RESUMO

Human phagocytes have key functions in the resolution of inflammation. Here, we assessed the role of the proposed 4S,5S-epoxy-resolvin intermediate in the biosynthesis of both resolvin D3 and resolvin D4. We found that human neutrophils converted this synthetic intermediate to resolvin D3 and resolvin D4. M2 macrophages transformed this labile epoxide intermediate to resolvin D4 and a previously unknown cysteinyl-resolvin isomer without appreciable amounts of resolvin D3. M2 macrophages play critical roles in the resolution of inflammation and in wound healing. Human M2 macrophages also converted leukotriene A4 to lipoxins. The cysteinyl-resolvin isomer significantly accelerated tissue regeneration of surgically injured planaria. In a model of human granuloma formation, the cysteinyl-resolvin isomer significantly inhibited granuloma development by human peripheral blood leukocytes. Together, these results provide evidence for a human cell type-specific role of 4S,5S-epoxy-resolvin in the biosynthesis of resolvin D3 by neutrophils, resolvin D4 by both M2 macrophages and neutrophils, and a unique cysteinyl-resolvin isomer produced by M2 macrophages that carries potent biological activities in granuloma formation and tissue regeneration.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Leucócitos/metabolismo , Macrófagos/metabolismo , Células Cultivadas , Granuloma , Humanos
6.
Mol Cancer Ther ; 20(12): 2384-2397, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607931

RESUMO

Resolving tumor-associated inflammation in the tumor microenvironment (TME) may promote antitumor effects. Lipoxin A4 (LXA4) is a short-lived endogenous bioactive lipid with potent anti-inflammatory and pro-resolving properties. Here, a biomimetic of LXA4, NAP1051, was shown to have LXA4-like in vitro properties and antitumor activity in colorectal cancer xenograft models. NAP1051 inhibited neutrophil chemotaxis toward fMLP and dose-dependently promoted dTHP-1 efferocytosis which was equipotent to aspirin-triggered lipoxin A4 (ATLA). In dTHP-1 cells, NAP1051 induced strong phosphorylation on ERK1/2 and AKT similar to formyl peptide receptor 2 (FPR2/ALX) agonists. In two mouse xenograft colorectal cancer models, NAP1051 significantly inhibited tumor growth when given orally at 4.8 to 5 mg/kg/day. Flow cytometric analyses showed that NAP1051 reduced splenic and intratumoral neutrophil and myeloid-derived suppressor cell populations, which correlated to the antitumor effect. In addition, NAP1051 reduced NETosis in the TME while stimulating T-cell recruitment. Overall, these results show that NAP1051 possesses key lipoxin-like properties and has antitumor activity against colorectal cancer via modulation of neutrophils and NETosis in the TME.


Assuntos
Biomimética/métodos , Lipoxinas/metabolismo , Neoplasias/tratamento farmacológico , Animais , Humanos , Masculino , Camundongos , Camundongos Nus , Transfecção , Microambiente Tumoral
7.
FASEB J ; 35(8): e21775, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34245621

RESUMO

Innervation sustains cornea integrity. Pigment epithelium-derived factor (PEDF) plus docosahexaenoic acid (DHA) regenerated damaged nerves by stimulating the synthesis of a new stereoisomer of Resolvin D6 (RvD6si). Here, we resolved the structure of this lipid isolated from mouse tears after injured corneas were treated with PEDF + DHA. RvD6si synthesis was inhibited by fluvoxamine, a cytochrome P450 inhibitor, but not by 15- or 5-LOX inhibitors, suggesting that the 4- and 17-hydroxy of DHA have an RR- or SR-configuration. The two compounds were chemically synthesized. Using chiral phase HPLC, four peaks of RvD6si1-4 from tears were resolved. The RR-RvD6 standard eluted as a single peak with RvD61 while pure SR-RvD6 eluted with RvD63 . The addition of these pure mediators prompted a trigeminal ganglion transcriptome response in injured corneas and showed that RR-RvD6 was the more potent, increasing cornea sensitivity and nerve regeneration. RR-RvD6 stimulates Rictor and hepatocyte growth factor (hgf) genes specifically as upstream regulators and a gene network involved in axon growth and suppression of neuropathic pain, indicating a novel function of this lipid mediator to maintain cornea integrity and homeostasis after injury.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Regeneração Nervosa , Nervo Trigêmeo/fisiologia , Animais , Fluvoxamina/farmacologia , Fator de Crescimento de Hepatócito/metabolismo , Masculino , Camundongos , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
8.
Sci Rep ; 11(1): 12787, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140611

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that causes coronavirus disease 2019 (COVID-19) has resulted in a pandemic affecting the most vulnerable in society, triggering a public health crisis and economic collapse around the world. Effective treatments to mitigate this viral infection are needed. Since the eye is a route of virus entrance, we use an in vivo rat model of corneal inflammation as well as human corneal epithelial cells (HCEC) in culture challenged with IFNγ as models of the eye surface to study this issue. We explore ways to block the receptor-binding domain (RBD) of SARS-CoV-2 Spike (S) protein to angiotensin-converting enzyme 2 (ACE2). We found that the lipid mediators, elovanoid (ELV)-N32 or Resolvin D6-isomer (RvD6i) decreased the expression of the ACE2 receptor, furin, and integrins in damaged corneas or IFNγ-stimulated HCEC. There was also a concomitant decrease in the binding of Spike RBD with the lipid treatments. Using RNA-seq analysis, we uncovered that the lipid mediators also attenuated the expression of pro-inflammatoy cytokines participating in hyper-inflammation and senescence programming. Thus, the bioactivity of these lipid mediators will contribute to open therapeutic avenues to counteract virus attachment and entrance to the body.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Senescência Celular/efeitos dos fármacos , Lesões da Córnea/metabolismo , Citocinas/metabolismo , Ácidos Docosa-Hexaenoicos/análogos & derivados , Ácidos Docosa-Hexaenoicos/farmacologia , Descoberta de Drogas/métodos , Domínios Proteicos , Transdução de Sinais/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , COVID-19/metabolismo , COVID-19/virologia , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio Corneano/citologia , Humanos , Lipoxinas/farmacologia , Masculino , Ligação Proteica , Ratos , Ratos Sprague-Dawley , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
9.
Sci Rep ; 11(1): 12324, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112906

RESUMO

The pro-homeostatic lipid mediators elovanoids (ELVs) attenuate cell binding and entrance of the SARS-CoV-2 receptor-binding domain (RBD) as well as of the SARS-CoV-2 virus in human primary alveoli cells in culture. We uncovered that very-long-chain polyunsaturated fatty acid precursors (VLC-PUFA, n-3) activate ELV biosynthesis in lung cells. Both ELVs and their precursors reduce the binding to RBD. ELVs downregulate angiotensin-converting enzyme 2 (ACE2) and enhance the expression of a set of protective proteins hindering cell surface virus binding and upregulating defensive proteins against lung damage. In addition, ELVs and their precursors decreased the signal of spike (S) protein found in SARS-CoV-2 infected cells, suggesting that the lipids curb viral infection. These findings open avenues for potential preventive and disease-modifiable therapeutic approaches for COVID-19.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/química , COVID-19/metabolismo , Células Cultivadas , Humanos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo
10.
Am J Pathol ; 191(6): 1049-1063, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33689792

RESUMO

Tissue injury elicits an inflammatory response that facilitates host defense. Resolution of inflammation promotes the transition to tissue repair and is governed, in part, by specialized pro-resolving mediators (SPM). The complete structures of a novel series of cysteinyl-SPM (cys-SPM) were recently elucidated, and proved to stimulate tissue regeneration in planaria and resolve acute inflammation in mice. Their functions in mammalian tissue repair are of interest. Here, nine structurally distinct cys-SPM were screened and PCTR1 uniquely enhanced human keratinocyte migration with efficacy similar to epidermal growth factor. In skin wounds of mice, PCTR1 accelerated closure. Wound infection increased PCTR1 that coincided with decreased bacterial burden. Addition of PCTR1 reduced wound bacteria levels and decreased inflammatory monocytes/macrophages, which was coupled with increased expression of genes involved in host defense and tissue repair. These results suggest that PCTR1 is a novel regulator of host defense and tissue repair, which could inform new approaches for therapeutic management of delayed tissue repair and infection.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Mediadores da Inflamação/metabolismo , Pele/metabolismo , Cicatrização/fisiologia , Infecção dos Ferimentos/metabolismo , Animais , Movimento Celular/fisiologia , Humanos , Queratinócitos/metabolismo , Camundongos
11.
Front Chem ; 8: 769, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062635

RESUMO

Traumatic brain injury (TBI) is a common and prevalent condition that affects large numbers of people across a range of ages. Individuals engaging in physical activities and victims of accidents are at a higher risk for TBI. There is a lack of available treatment specifically for TBI. Given the difficulty to determine its precise location in the brain, TBI remains difficult to fully diagnose or treat. Herein, we disclose a novel strategy for directing therapeutic agents to TBI sites, without the need to determine the precise location of the TBI activity in the brain. This novel approach is based on the use of a cyanine dye nanocage carrying Gabapentin, a known TBI therapeutic agent. Upon exposure of the cyanine nanocage to near-infrared light, the local release of Gabapentin is triggered, selectively at the TBI-affected site.

12.
Res Sq ; 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32818210

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that causes coronavirus disease 2019 (COVID-19) has resulted in a pandemic affecting the most vulnerable in society, triggering a public health crisis and economic tall around the world. Effective treatments to mitigate this virus infection are needed. Since the eye is a route of virus entrance, we use an in vivo rat model of corneal inflammation as well as human corneal epithelial cells in culture challenged with IFNγ to study this issue. We explore ways to block the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) protein to angiotensin-converting enzyme 2 (ACE2). Elovanoid (ELV)-N32 or Resolvin D6-isomer (RvD6i), among the lipid mediators studied, consistently decreased the expression of the ACE2 receptor, furin, and integrins in damaged corneas or IFNγ stimulated human corneal epithelial cells (HCEC). There was also a concomitant decrease in the binding of spike RBD with the lipid treatments. Concurrently, we uncovered that the lipid mediators also attenuated the expression of cytokines that participate in the cytokine storm, hyper-inflammation and senescence programming. Thus, the bioactivity of these lipid mediators will contribute to opening therapeutic avenues for COVID-19 by counteracting virus attachment and entrance to the eye and other cells and the ensuing disruptions of homeostasis.

13.
Mol Pharm ; 17(12): 4499-4509, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32813533

RESUMO

More than 2.8 million annually in the United States are afflicted with some form of traumatic brain injury (TBI), where 75% of victims have a mild form of TBI (MTBI). TBI risk is higher for individuals engaging in physical activities or involved in accidents. Although MTBI may not be initially life-threatening, a large number of these victims can develop cognitive and physical dysfunctions. These late clinical sequelae have been attributed to the development of secondary injuries that can occur minutes to days after the initial impact. To minimize brain damage from TBI, it is critical to diagnose and treat patients within the first or "golden" hour after TBI. Although it would be very helpful to quickly determine the TBI locations in the brain and direct the treatment selectively to the affected sites, this remains a challenge. Herein, we disclose our novel strategy to target cyclosporine A (CsA) into TBI sites, without the need to locate the exact location of the TBI lesion. Our approach is based on TBI treatment with a cyanine dye nanocage attached to CsA, a known therapeutic agent for TBI that is associated with unacceptable toxicities. In its caged form, CsA remains inactive, while after near-IR light photoactivation, the resulting fragmentation of the cyanine nanocage leads to the selective release of CsA at the TBI sites.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Ciclosporina/administração & dosagem , Portadores de Fármacos/efeitos da radiação , Fármacos Neuroprotetores/administração & dosagem , Fotoquimioterapia/métodos , Animais , Carbocianinas/química , Carbocianinas/efeitos da radiação , Ciclosporina/farmacocinética , Modelos Animais de Doenças , Portadores de Fármacos/química , Liberação Controlada de Fármacos/efeitos da radiação , Humanos , Raios Infravermelhos , Nanopartículas/química , Fármacos Neuroprotetores/farmacocinética , Ratos
14.
Brain Circ ; 6(4): 260-268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33506149

RESUMO

OBJECTIVE: Acute ischemic stroke triggers complex neurovascular, neuroinflammatory, and synaptic alterations. This study explores whether blocking pro-inflammatory platelet-activating factor receptor (PAF-R) plus selected docosanoids after middle cerebral artery occlusion (MCAo) would lead to neurological recovery. The following small molecules were investigated: (a) LAU-0901, a PAF-R antagonist that blocks pro-inflammatory signaling; and (b) derivatives of docosahexaenoic acid (DHA), neuroprotectin D1 (NPD1), and aspirin-triggered NPD1 (AT-NPD1), which activates cell survival pathways and are exert potent anti-inflammatory activity in the brain. MATERIALS AND METHODS: Sprague-Dawley rats received 2 h MCAo and LAU-0901 (30 or 60 mg/kg, 2 h after stroke), NPD1, and AT-NPD1 (333 µg/kg), DHA (5 mg/kg), and their combination were administered intravenous at 3 h after stroke. Behavior testing and ex vivo magnetic resonance imaging were conducted on day 3 or 14 to assess lesion characteristics and lipidomic analysis on day 1. Series 1 (LAU-0901 + NPD1, 14d), Series 2 (LAU-0901 + AT-NPD1, 3d), and Series 3 (LAU-0901 + DHA, 1d). RESULTS: All combinatory groups improved behavior compared to NPD1, AT-NPD1, or DHA treatments alone. Total lesion volumes were reduced with LAU-0901 + NPD1 by 62% and LAU-0901 + AT-NPD1 by 90% treatments versus vehicle groups. LAU-0901 and LAU-0901 + DHA increased the production of vasoactive lipid mediators (prostaglandins: PGE2, PGF2- α, 6-keto-PGF1- α, and PGD2) as well an inflammatory regulating mediator hydroxyoctadecadienoic acid. In contrast, LAU-0901 and LAU-0901 + DHA decreased the production of 12-hydroxyeicosatetraenoic acid, a pro-inflammatory mediator. CONCLUSION: Combination therapy with LAU-0901 and selected docosanoids is more effective than the single therapy, affording synergistic neuroprotection, with restored pro-homeostatic lipid mediators and improved neurological recovery. Altogether, our findings support the combinatory therapy as the basis for future therapeutics for ischemic stroke.

15.
Proc Natl Acad Sci U S A ; 116(48): 24317-24325, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712409

RESUMO

The onset of neurodegenerative diseases activates inflammation that leads to progressive neuronal cell death and impairments in cognition (Alzheimer's disease) and sight (age-related macular degeneration [AMD]). How neuroinflammation can be counteracted is not known. In AMD, amyloid ß-peptide (Aß) accumulates in subretinal drusen. In the 5xFAD retina, we found early functional deficiencies (ERG) without photoreceptor cell (PRC) death and identified early insufficiency in biosynthetic pathways of prohomeostatic/neuroprotective mediators neuroprotectin D1 (NPD1) and elovanoids (ELVs). To mimic an inflammatory milieu in wild-type mouse, we triggered retinal pigment epithelium (RPE) damage/PRC death by subretinally injected oligomeric ß-amyloid (OAß) and observed that ELVs administration counteracted their effects, protecting these cells. In addition, ELVs prevented OAß-induced changes in gene expression engaged in senescence, inflammation, autophagy, extracellular matrix remodeling, and AMD. Moreover, as OAß targets the RPE, we used primary human RPE cell cultures and demonstrated that OAß caused cell damage, while ELVs protected and restored gene expression as in mouse. Our data show OAß activates senescence as reflected by enhanced expression of p16INK4a, MMP1, p53, p21, p27, and Il-6, and of senescence-associated phenotype secretome, followed by RPE and PRC demise, and that ELVs 32 and 34 blunt these events and elicit protection. In addition, ELVs counteracted OAß-induced expression of genes engaged in AMD, autophagy, and extracellular matrix remodeling. Overall, our data uncovered that ELVs downplay OAß-senescence program induction and inflammatory transcriptional events and protect RPE cells and PRC, and therefore have potential as a possible therapeutic avenue for AMD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Células Fotorreceptoras/fisiologia , Peptídeos beta-Amiloides/toxicidade , Animais , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Células Cultivadas , Ácidos Docosa-Hexaenoicos/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Fotorreceptoras/patologia , Retina/metabolismo , Retina/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Adulto Jovem
16.
Sci Adv ; 3(9): e1700735, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28959727

RESUMO

We report the characterization of a novel class of lipid mediators termed elovanoids (ELVs) (ELV-N32 and ELV-N34), which are dihydroxylated derivatives of 32:6n3 and 34:6n3, respectively. The precursors of ELVs are made by elongation of a 22:6n3 fatty acid and catalyzed by ELOVL4 (elongation of very-long-chain fatty acids-4). The structure and stereochemistry of ELVs were established using synthetic compounds produced by stereocontrolled total synthesis. We report that ELV-mediated protection is induced in neuronal cultures undergoing either oxygen/glucose deprivation or N-methyl-d-aspartate receptor-mediated excitotoxicity, as well as in experimental ischemic stroke. The methyl ester or sodium salt of ELV-N32 and ELV-N34 resulted in reduced infarct volumes, promoted cell survival, and diminished neurovascular unit disruption when administered 1 hour following 2 hours of ischemia by middle cerebral artery occlusion. Together, our data reveal a novel prohomeostatic and neuroprotective lipid-signaling mechanism aiming to sustain neural cell integrity.


Assuntos
Homeostase/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Biomarcadores , Barreira Hematoencefálica/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Imageamento por Ressonância Magnética , Estrutura Molecular , Fármacos Neuroprotetores/química , Gravidez , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Estereoisomerismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia
17.
Sci Rep ; 7(1): 5279, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28706274

RESUMO

Docosahexaenoic acid (DHA, 22:6 n-3) is abundant in the retina and is enzymatically converted into pro-homeostatic docosanoids. The DHA- or eicosapentaenoic acid (EPA)-derived 26 carbon fatty acid is a substrate of elongase ELOVL4, which is expressed in photoreceptor cells and generates very long chain (≥C28) polyunsaturated fatty acids including n-3 (VLC-PUFAs,n-3). While ELOVL4 mutations are linked to vision loss and neuronal dysfunctions, the roles of VLC-PUFAs remain unknown. Here we report a novel class of lipid mediators biosynthesized in human retinal pigment epithelial (RPE) cells that are oxygenated derivatives of VLC-PUFAs,n-3; we termed these mediators elovanoids (ELV). ELVs have structures reminiscent of docosanoids but with different physicochemical properties and alternatively-regulated biosynthetic pathways. The structures, stereochemistry, and bioactivity of ELVs were determined using synthetic materials produced by stereo-controlled chemical synthesis. ELVs enhance expression of pro-survival proteins in cells undergoing uncompensated oxidative stress. Our findings unveil a novel autocrine/paracrine pro-homeostatic RPE cell signaling that aims to sustain photoreceptor cell integrity and reveal potential therapeutic targets for retinal degenerations.


Assuntos
Ácidos Graxos Insaturados/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Células Fotorreceptoras/efeitos dos fármacos , Receptores de Adiponectina/fisiologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Adulto , Animais , Células Cultivadas , Proteínas do Olho/metabolismo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroproteção , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais , Adulto Jovem
18.
Proc Natl Acad Sci U S A ; 113(43): 12232-12237, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27791009

RESUMO

Macrophages are central in coordinating immune responses, tissue repair, and regeneration, with different subtypes being associated with inflammation-initiating and proresolving actions. We recently identified a family of macrophage-derived proresolving and tissue regenerative molecules coined maresin conjugates in tissue regeneration (MCTR). Herein, using lipid mediator profiling we identified MCTR in human serum, lymph nodes, and plasma and investigated MCTR biosynthetic pathways in human macrophages. With human recombinant enzymes, primary cells, and enantiomerically pure compounds we found that the synthetic maresin epoxide intermediate 13S,14S-eMaR (13S,14S-epoxy- 4Z,7Z,9E,11E,16Z,19Z-docosahexaenoic acid) was converted to MCTR1 (13R-glutathionyl, 14S-hydroxy-4Z,7Z,9E,11E,13R,14S,16Z,19Z-docosahexaenoic acid) by LTC4S and GSTM4. Incubation of human macrophages with LTC4S inhibitors blocked LTC4 and increased resolvins and lipoxins. The conversion of MCTR1 to MCTR2 (13R-cysteinylglycinyl, 14S-hydroxy-4Z,7Z,9E,11E,13R,14S,16Z,19Z-docosahexaenoic acid) was catalyzed by γ-glutamyl transferase (GGT) in human macrophages. Biosynthesis of MCTR3 was mediated by dipeptidases that cleaved the cysteinyl-glycinyl bond of MCTR2 to give 13R-cysteinyl, 14S-hydroxy-4Z,7Z,9E,11E,13R,14S,16Z,19Z-docosahexaenoic acid. Of note, both GSTM4 and GGT enzymes displayed higher affinity to 13S,14S-eMaR and MCTR1 compared with their classic substrates in the cysteinyl leukotriene metabolome. Together these results establish the MCTR biosynthetic pathway and provide mechanisms in tissue repair and regeneration.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Inflamação/metabolismo , Lipídeos/genética , Regeneração/genética , Vias Biossintéticas/genética , Ácidos Docosa-Hexaenoicos/genética , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Humanos , Inflamação/genética , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Linfonodos/crescimento & desenvolvimento , Linfonodos/metabolismo , Macrófagos/metabolismo , Estrutura Molecular , Estereoisomerismo , Cicatrização/genética
19.
Am J Pathol ; 186(7): 1801-1813, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27171898

RESUMO

Acute lung injury is a life-threatening condition caused by disruption of the alveolar-capillary barrier leading to edema, influx of inflammatory leukocytes, and impaired gas exchange. Specialized proresolving mediators biosynthesized from essential fatty acids, such as docosahexaenoic acid, have tissue protective effects in acute inflammation. Herein, we found that the docosahexaenoic acid-derived mediator resolvin D3 (RvD3): 4S,11R,17S-trihydroxydocosa-5Z,7E,9E,13Z,15E,19Z-hexaenoic acid was present in uninjured lungs, and increased significantly 24 to 72 hours after hydrochloric acid-initiated injury. Because of its delayed enzymatic degradation, we used aspirin-triggered (AT)-RvD3: 4S,11R,17R-trihydroxydocosa-5Z,7E,9E,13Z,15E,19Z-hexaenoic acid, a 17R-epimer of RvD3, for in vivo experiments. Histopathological correlates of acid injury (alveolar wall thickening, edema, and leukocyte infiltration) were reduced in mice receiving AT-RvD3 1 hour after injury. AT-RvD3-treated mice had significantly reduced edema, as demonstrated by lower wet/dry weight ratios, increased epithelial sodium channel γ expression, and more lymphatic vessel endothelial hyaluronan receptor 1-positive vascular endothelial growth factor receptor 3-positive lymphatic vessels. Evidence for counterregulation of NF-κB by RvD3 and AT-RvD3 was seen in vitro and by AT-RvD3 in vivo. Increases in lung epithelial cell proliferation and bronchoalveolar lavage fluid levels of keratinocyte growth factor were observed with AT-RvD3, which also promoted cutaneous re-epithelialization. Together, these data demonstrate protective actions of RvD3 and AT-RvD3 for injured mucosa that accelerated restoration of epithelial barrier and function.


Assuntos
Lesão Pulmonar Aguda/patologia , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/farmacologia , Lesão Pulmonar Aguda/metabolismo , Animais , Aspirina/farmacologia , Western Blotting , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C
20.
Sci Rep ; 6: 18972, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26743932

RESUMO

Resolvins of the D-series are specialized pro-resolving lipid mediators that regulate cellular response by orchestrating resolution networks involved in host responses to injury and infection. Here, endogenous resolvin D4 was identified in human tissues and found to persist late into the resolution phase of acute murine Staphylococcus aureus infections. Completion of the first total synthesis of resolvin D4 established the absolute stereochemical configuration of RvD4 confirmed by matching with endogenous RvD4 from resolving exudates in dorsal pouch S. aureus infections. In vivo, RvD4 (ng/mouse) reduced neutrophilic infiltration (~40%) and enhanced uptake of apoptotic PMN (51%) by human dermal fibroblasts at concentrations as low as 0.1 nM. These results establish the complete stereochemistry of RvD4 as 4S,5R,17S-trihydroxydocosa-6E,8E,10Z,13Z,15E,19Z-hexaenoic acid and its novel pro-resolving actions in S. aureus infections as well as its potent ability to stimulate clearance of apoptotic cells by skin fibroblasts.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Peritonite/tratamento farmacológico , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Apoptose/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/biossíntese , Ácidos Docosa-Hexaenoicos/química , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Interações Hospedeiro-Patógeno , Humanos , Masculino , Camundongos , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/patologia , Peritonite/imunologia , Peritonite/microbiologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/microbiologia , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...