Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Comput Assist Radiol Surg ; 19(5): 871-880, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38512588

RESUMO

PURPOSE: Automatic surgical phase recognition is crucial for video-based assessment systems in surgical education. Utilizing temporal information is crucial for surgical phase recognition; hence, various recent approaches extract frame-level features to conduct full video temporal modeling. METHODS: For better temporal modeling, we propose SlowFast temporal modeling network (SF-TMN) for offline surgical phase recognition that can achieve not only frame-level full video temporal modeling but also segment-level full video temporal modeling. We employ a feature extraction network, pretrained on the target dataset, to extract features from video frames as the training data for SF-TMN. The Slow Path in SF-TMN utilizes all frame features for frame temporal modeling. The Fast Path in SF-TMN utilizes segment-level features summarized from frame features for segment temporal modeling. The proposed paradigm is flexible regarding the choice of temporal modeling networks. RESULTS: We explore MS-TCN and ASFormer as temporal modeling networks and experiment with multiple combination strategies for Slow and Fast Paths. We evaluate SF-TMN on Cholec80 and Cataract-101 surgical phase recognition tasks and demonstrate that SF-TMN can achieve state-of-the-art results on all considered metrics. SF-TMN with ASFormer backbone outperforms the state-of-the-art Swin BiGRU by approximately 1% in accuracy and 1.5% in recall on Cholec80. We also evaluate SF-TMN on action segmentation datasets including 50salads, GTEA, and Breakfast, and achieve state-of-the-art results. CONCLUSION: The improvement in the results shows that combining temporal information from both frame level and segment level by refining outputs with temporal refinement stages is beneficial for the temporal modeling of surgical phases.


Assuntos
Gravação em Vídeo , Humanos , Redes Neurais de Computação , Extração de Catarata/métodos , Cirurgia Assistida por Computador/métodos
2.
Int J Comput Assist Radiol Surg ; 18(4): 785-794, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36542253

RESUMO

PURPOSE: Automatic surgical workflow recognition enabled by computer vision algorithms plays a key role in enhancing the learning experience of surgeons. It also supports building context-aware systems that allow better surgical planning and decision making which may in turn improve outcomes. Utilizing temporal information is crucial for recognizing context; hence, various recent approaches use recurrent neural networks or transformers to recognize actions. METHODS: We design and implement a two-stage method for surgical workflow recognition. We utilize R(2+1)D for video clip modeling in the first stage. We propose Action Segmentation Temporal Convolutional Transformer (ASTCFormer) network for full video modeling in the second stage. ASTCFormer utilizes action segmentation transformers (ASFormers) and temporal convolutional networks (TCNs) to build a temporally aware surgical workflow recognition system. RESULTS: We compare the proposed ASTCFormer with recurrent neural networks, multi-stage TCN, and ASFormer approaches. The comparison is done on a dataset comprised of 207 robotic and laparoscopic cholecystectomy surgical videos annotated for 7 surgical phases. The proposed method outperforms the compared methods achieving a [Formula: see text] relative improvement in the average segmental F1-score over the state-of-the-art ASFormer method. Moreover, our proposed method achieves state-of-the-art results on the publicly available Cholec80 dataset. CONCLUSION: The improvement in the results when using the proposed method suggests that temporal context could be better captured when adding information from TCN to the ASFormer paradigm. This addition leads to better surgical workflow recognition.


Assuntos
Algoritmos , Laparoscopia , Humanos , Fluxo de Trabalho , Redes Neurais de Computação , Laparoscopia/métodos , Colecistectomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...