Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 217, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191530

RESUMO

The tripartite ATP-independent periplasmic (TRAP) transporters use an extra cytoplasmic substrate binding protein (SBP) to transport a wide variety of substrates in bacteria and archaea. The SBP can adopt an open- or closed state depending on the presence of substrate. The two transmembrane domains of TRAP transporters form a monomeric elevator whose function is strictly dependent on the presence of a sodium ion gradient. Insights from experimental structures, structural predictions and molecular modeling have suggested a conformational coupling between the membrane elevator and the substrate binding protein. Here, we use a disulfide engineering approach to lock the TRAP transporter HiSiaPQM from Haemophilus influenzae in different conformational states. The SBP, HiSiaP, is locked in its substrate-bound form and the transmembrane elevator, HiSiaQM, is locked in either its assumed inward- or outward-facing states. We characterize the disulfide-locked constructs and use single-molecule total internal reflection fluorescence (TIRF) microscopy to study their interactions. Our experiments demonstrate that the SBP and the transmembrane elevator are indeed conformationally coupled, meaning that the open and closed state of the SBP recognize specific conformational states of the transporter and vice versa.


Assuntos
Proteínas de Transporte , Ácido N-Acetilneuramínico , Proteínas de Membrana Transportadoras/genética , Conformação Molecular , Dissulfetos
2.
Nature ; 623(7985): 202-209, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37880361

RESUMO

The newly characterized sperm-specific Na+/H+ exchanger stands out by its unique tripartite domain composition1,2. It unites a classical solute carrier unit with regulatory domains usually found in ion channels, namely, a voltage-sensing domain and a cyclic-nucleotide binding domain1,3, which makes it a mechanistic chimera and a secondary-active transporter activated strictly by membrane voltage. Our structures of the sea urchin SpSLC9C1 in the absence and presence of ligands reveal the overall domain arrangement and new structural coupling elements. They allow us to propose a gating model, where movements in the voltage sensor indirectly cause the release of the exchanging unit from a locked state through long-distance allosteric effects transmitted by the newly characterized coupling helices. We further propose that modulation by its ligand cyclic AMP occurs by means of disruption of the cytosolic dimer interface, which lowers the energy barrier for S4 movements in the voltage-sensing domain. As SLC9C1 members have been shown to be essential for male fertility, including in mammals2,4,5, our structure represents a potential new platform for the development of new on-demand contraceptives.


Assuntos
AMP Cíclico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico , Ouriços-do-Mar , Espermatozoides , Animais , Masculino , Regulação Alostérica , AMP Cíclico/metabolismo , Fertilidade , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ligantes , Domínios Proteicos , Multimerização Proteica , Ouriços-do-Mar/química , Ouriços-do-Mar/metabolismo , Espermatozoides/química , Espermatozoides/metabolismo , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo
3.
Nature ; 614(7946): 168-174, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36423657

RESUMO

CRISPR defence systems such as the well-known DNA-targeting Cas9 and the RNA-targeting type III systems are widespread in prokaryotes1,2. The latter orchestrates a complex antiviral response that is initiated through the synthesis of cyclic oligoadenylates after recognition of foreign RNA3-5. Among the large set of proteins that are linked to type III systems and predicted to bind cyclic oligoadenylates6,7, a CRISPR-associated Lon protease (CalpL) stood out to us. CalpL contains a sensor domain of the SAVED family7 fused to a Lon protease effector domain. However, the mode of action of this effector is unknown. Here we report the structure and function of CalpL and show that this soluble protein forms a stable tripartite complex with two other proteins, CalpT and CalpS, that are encoded on the same operon. After activation by cyclic tetra-adenylate (cA4), CalpL oligomerizes and specifically cleaves the MazF homologue CalpT, which releases the extracytoplasmic function σ factor CalpS from the complex. Our data provide a direct connection between CRISPR-based detection of foreign nucleic acids and transcriptional regulation. Furthermore, the presence of a SAVED domain that binds cyclic tetra-adenylate in a CRISPR effector reveals a link to the cyclic-oligonucleotide-based antiphage signalling system.


Assuntos
Bactérias , Bacteriófagos , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Nucleotídeos Cíclicos , Protease La , Bactérias/enzimologia , Bactérias/imunologia , Bactérias/metabolismo , Bactérias/virologia , Bacteriófagos/imunologia , Bacteriófagos/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , AMP Cíclico/análogos & derivados , AMP Cíclico/química , Ativação Enzimática , Regulação Bacteriana da Expressão Gênica , Nucleotídeos Cíclicos/imunologia , Nucleotídeos Cíclicos/metabolismo , Óperon , Protease La/química , Protease La/metabolismo , RNA Viral , Fator sigma , Transcrição Gênica
4.
Nat Commun ; 13(1): 4471, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927235

RESUMO

Tripartite ATP-independent periplasmic (TRAP) transporters are found widely in bacteria and archaea and consist of three structural domains, a soluble substrate-binding protein (P-domain), and two transmembrane domains (Q- and M-domains). HiSiaPQM and its homologs are TRAP transporters for sialic acid and are essential for host colonization by pathogenic bacteria. Here, we reconstitute HiSiaQM into lipid nanodiscs and use cryo-EM to reveal the structure of a TRAP transporter. It is composed of 16 transmembrane helices that are unexpectedly structurally related to multimeric elevator-type transporters. The idiosyncratic Q-domain of TRAP transporters enables the formation of a monomeric elevator architecture. A model of the tripartite PQM complex is experimentally validated and reveals the coupling of the substrate-binding protein to the transporter domains. We use single-molecule total internal reflection fluorescence (TIRF) microscopy in solid-supported lipid bilayers and surface plasmon resonance to study the formation of the tripartite complex and to investigate the impact of interface mutants. Furthermore, we characterize high-affinity single variable domains on heavy chain (VHH) antibodies that bind to the periplasmic side of HiSiaQM and inhibit sialic acid uptake, providing insight into how TRAP transporter function might be inhibited in vivo.


Assuntos
Proteínas de Bactérias , Ácido N-Acetilneuramínico , Trifosfato de Adenosina/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ácido N-Acetilneuramínico/metabolismo
5.
Nat Commun ; 13(1): 4396, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906222

RESUMO

Pulsed electron-electron double resonance spectroscopy (PELDOR/DEER) and single-molecule Förster resonance energy transfer spectroscopy (smFRET) are frequently used to determine conformational changes, structural heterogeneity, and inter probe distances in biological macromolecules. They provide qualitative information that facilitates mechanistic understanding of biochemical processes and quantitative data for structural modelling. To provide a comprehensive comparison of the accuracy of PELDOR/DEER and smFRET, we use a library of double cysteine variants of four proteins that undergo large-scale conformational changes upon ligand binding. With either method, we use established standard experimental protocols and data analysis routines to determine inter-probe distances in the presence and absence of ligands. The results are compared to distance predictions from structural models. Despite an overall satisfying and similar distance accuracy, some inconsistencies are identified, which we attribute to the use of cryoprotectants for PELDOR/DEER and label-protein interactions for smFRET. This large-scale cross-validation of PELDOR/DEER and smFRET highlights the strengths, weaknesses, and synergies of these two important and complementary tools in integrative structural biology.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Ligantes , Marcadores de Spin
6.
J Mol Biol ; 433(3): 166756, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33316271

RESUMO

The pathogens Vibrio cholerae and Haemophilus influenzae use tripartite ATP-independent periplasmic transporters (TRAPs) to scavenge sialic acid from host tissues. They use it as a nutrient or to evade the innate immune system by sialylating surface lipopolysaccharides. An essential component of TRAP transporters is a periplasmic substrate binding protein (SBP). Without substrate, the SBP has been proposed to rest in an open-state, which is not recognised by the transporter. Substrate binding induces a conformational change of the SBP and it is thought that this closed state is recognised by the transporter, triggering substrate translocation. Here we use real time single molecule FRET experiments and crystallography to investigate the open- to closed-state transition of VcSiaP, the SBP of the sialic acid TRAP transporter from V. cholerae. We show that the conformational switching of VcSiaP is strictly substrate induced, confirming an important aspect of the proposed transport mechanism. Two new crystal structures of VcSiaP provide insights into the closing mechanism. While the first structure contains the natural ligand, sialic acid, the second structure contains an artificial peptide in the sialic acid binding site. Together, the two structures suggest that the ligand itself stabilises the closed state and that SBP closure is triggered by physically bridging the gap between the two lobes of the SBP. Finally, we demonstrate that the affinity for the artificial peptide substrate can be substantially increased by varying its amino acid sequence and by this, serve as a starting point for the development of peptide-based inhibitors of TRAP transporters.


Assuntos
Transportadores de Ânions Orgânicos/química , Transportadores de Ânions Orgânicos/metabolismo , Simportadores/química , Simportadores/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Ligantes , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
7.
Methods Mol Biol ; 2168: 313-333, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33582999

RESUMO

Every membrane protein is involved in close interactions with the lipid environment of cellular membranes. The annular lipids, that are in direct contact with the polypeptide, can in principle be seen as an integral part of its structure, akin to the first hydration shell of soluble proteins. It is therefore desirable to investigate the structure of membrane proteins and especially their conformational flexibility under conditions that are as close as possible to their native state. This can be achieved by reconstituting the protein into proteoliposomes, nanodiscs, or bicelles. In recent years, PELDOR/DEER spectroscopy has proved to be a very useful method to study the structure and function of membrane proteins in such artificial membrane environments. The technique complements both X-ray crystallography and cryo-EM and can be used in combination with virtually any artificial membrane environment and under certain circumstances even in native membranes. Of the above-mentioned membrane mimics, bicelles are currently the least often used for PELDOR studies, although they offer some advantages, especially their ease of use. Here, we provide a step-by-step protocol for studying a bicelle reconstituted membrane protein with PELDOR/DEER spectroscopy.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Membrana Celular/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Bicamadas Lipídicas/metabolismo , Marcadores de Spin , Bicamadas Lipídicas/química , Conformação Molecular
8.
Structure ; 27(9): 1416-1426.e3, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31303480

RESUMO

The type-III secretion effector YopO helps pathogenic Yersinia to outmaneuver the human immune system. Injected into host cells, it functions as a Ser/Thr kinase after activation by actin binding. This activation process is thought to involve large conformational changes. We use PELDOR spectroscopy and small-angle X-ray scattering in combination with available crystal structures to study these conformational transitions. Low-resolution hybrid models of the YopO/actin structure in solution were constructed, where the kinase domain of YopO is tilted "backward" compared with the crystal structure, thus shortening the distance between actin and the kinase active site, potentially affecting the substrate specificity of YopO. Furthermore, the GDI domain of the hybrid models resembles a conformation that was previously observed in a crystal structure of the isolated GDI domain. We investigate possible structural reasons for the inactivity of the apo state, analyze its flexibility and discuss the biological implications.


Assuntos
Actinas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Yersinia/química , Yersinia/metabolismo , Domínio Catalítico , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Espalhamento a Baixo Ângulo , Difração de Raios X
9.
Methods ; 147: 163-175, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29510248

RESUMO

In 1985, the first X-ray structure of a membrane protein was determined. Today, more than 30 years later, many more structures have been solved. Nevertheless, studying the structure of membrane proteins remains a very challenging task. Due to their inherent conformational flexibility, having a single X-ray structure is usually only the first step towards truly understanding the function of these dynamic molecules. For this reason, additional methods are needed that can provide complementary information, especially about conformational flexibility. Pulsed electron-electron double resonance spectroscopy (PELDOR, also known as DEER) is such a method. It can be used to precisely measure nanometer distance distributions between intrinsic or artificially introduced spin-centers in macromolecules and thereby to probe the conformational state of the macromolecule. PELDOR can be applied in solution, in detergent, in lipid bilayers and even within cells. However, PELDOR is an advanced spectroscopy technique and requires specialised equipment and training. This chapter aims to be a starting point for crystallographers and other structural biologists who want to get a better understanding of PELDOR spectroscopy and its application. It gives an insight into the planning stages of the experiment (i.e., which spin labels are possible and where to place them), how a PELDOR experiment is conducted and how the results are interpreted. For this purpose, the substrate binding protein (SBP) from a Vibrio cholerae TRAP transporter is used as a step-by-step example. Further, the chapter gives examples of how PELDOR spectroscopy has previously been applied to overcome known limitations of X-ray crystallography in modern integrative structural biology approaches.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Cristalografia , Transferência Ressonante de Energia de Fluorescência , Conformação Proteica
10.
Chemistry ; 24(26): 6665-6671, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29369431

RESUMO

Pulsed electron-electron double resonance spectroscopy (known as PELDOR or DEER) has recently become a very popular tool in structural biology. The technique can be used to accurately measure distance distributions within macromolecules or macromolecular complexes, and has become a standard method to validate structural models and to study the conformational flexibility of macromolecules. It can be applied in solution, in lipid environments or even in cells. Because most biological macromolecules are diamagnetic, they are normally invisible for PELDOR spectroscopy. To render a particular target molecule accessible for PELDOR, it can be engineered to contain only one or two surface-exposed cysteine residues, which can be efficiently spin-labelled using thiol-reactive nitroxide compounds. This method has been coined "site-directed spin labelling" (SDSL) and is normally straight-forward. But, SDSL can be very challenging for proteins with many native cysteines, or even a single functionally or structurally important cysteine residue. For such cases, alternative spin labelling techniques are needed. Here we describe the concept of "inhibitor-directed spin labelling" (IDSL) as an approach to spin label suitable cysteine-rich proteins in a site-directed and highly specific manner by employing bespoke spin-labelled inhibitors. Advantages and disadvantages of IDSL are discussed.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Proteínas/química , Óxidos N-Cíclicos/química , Cisteína/química , Receptores ErbB/química , Receptores ErbB/metabolismo , Mesilatos/química , Conformação Proteica , Inibidores de Proteínas Quinases/química , Proteínas/metabolismo , Soluções/química , Marcadores de Spin
11.
Biophys J ; 112(1): 109-120, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28076802

RESUMO

The tripartite ATP-independent periplasmic (TRAP) transporters are a widespread class of membrane transporters in bacteria and archaea. Typical substrates for TRAP transporters are organic acids including the sialic acid N-acetylneuraminic acid. The substrate binding proteins (SBP) of TRAP transporters are the best studied component and are responsible for initial high-affinity substrate binding. To better understand the dynamics of the ligand binding process, pulsed electron-electron double resonance (PELDOR, also known as DEER) spectroscopy was applied to study the conformational changes in the N-acetylneuraminic acid-specific SBP VcSiaP. The protein is the SBP of VcSiaPQM, a sialic acid TRAP transporter from Vibrio cholerae. Spin-labeled double-cysteine mutants of VcSiaP were analyzed in the substrate-bound and -free state and the measured distances were compared to available crystal structures. The data were compatible with two clear states only, which are consistent with the open and closed forms seen in TRAP SBP crystal structures. Substrate titration experiments demonstrated the transition of the population from one state to the other with no other observed forms. Mutants of key residues involved in ligand binding and/or proposed to be involved in domain closure were produced and the corresponding PELDOR experiments reveal important insights into the open-closed transition. The results are in excellent agreement with previous in vivo sialylation experiments. The structure of the spin-labeled Q54R1/L173R1 R125A mutant was solved at 2.1 Å resolution, revealing no significant changes in the protein structure. Thus, the loss of domain closure appears to be solely due to loss of binding. In conclusion, these data are consistent with TRAP SBPs undergoing a simple two-state transition from an open-unliganded to closed-liganded state during the transport cycle.


Assuntos
Transportadores de Ânions Orgânicos/química , Transportadores de Ânions Orgânicos/metabolismo , Simportadores/química , Simportadores/metabolismo , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Ácido N-Acetilneuramínico/metabolismo , Conformação Proteica , Soluções , Vibrio cholerae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...