Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 3577, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395869

RESUMO

Haematopoietic stem cells are generated from the haemogenic endothelium (HE) located in the floor of the dorsal aorta (DA). Despite being integral to arteries, it is controversial whether HE and arterial endothelium share a common lineage. Here, we present a transgenic zebrafish runx1 reporter line to isolate HE and aortic roof endothelium (ARE)s, excluding non-aortic endothelium. Transcriptomic analysis of these populations identifies Runx1-regulated genes and shows that HE initially expresses arterial markers at similar levels to ARE. Furthermore, runx1 expression depends on prior arterial programming by the Notch ligand dll4. Runx1-/- mutants fail to downregulate arterial genes in the HE, which remains integrated within the DA, suggesting that Runx1 represses the pre-existing arterial programme in HE to allow progression towards the haematopoietic fate. These findings strongly suggest that, in zebrafish, aortic endothelium is a precursor to HE, with potential implications for pluripotent stem cell differentiation protocols for the generation of transplantable HSCs.


Assuntos
Artérias/embriologia , Endotélio Vascular/embriologia , Hemangioblastos/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Artérias/citologia , Artérias/metabolismo , Linhagem da Célula , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Embrião não Mamífero , Desenvolvimento Embrionário , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Técnicas de Inativação de Genes , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Dev Cell ; 38(4): 358-70, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27499523

RESUMO

Hematopoietic stem cells (HSCs) are self-renewing multipotent stem cells that generate mature blood lineages throughout life. They, together with hematopoietic progenitor cells (collectively known as HSPCs), emerge from hemogenic endothelium in the floor of the embryonic dorsal aorta by an endothelial-to-hematopoietic transition (EHT). Here we demonstrate that transforming growth factor ß (TGFß) is required for HSPC specification and that it regulates the expression of the Notch ligand Jagged1a in endothelial cells prior to EHT, in a striking parallel with the epithelial-to-mesenchymal transition (EMT). The requirement for TGFß is two fold and sequential: autocrine via Tgfß1a and Tgfß1b produced in the endothelial cells themselves, followed by a paracrine input of Tgfß3 from the notochord, suggesting that the former programs the hemogenic endothelium and the latter drives EHT. Our findings have important implications for the generation of HSPCs from pluripotent cells in vitro.


Assuntos
Endotélio Vascular/embriologia , Células-Tronco Hematopoéticas/citologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Transição Epitelial-Mesenquimal , Proteína Jagged-1/biossíntese , Proteína Jagged-1/genética , Morfolinos/genética , Células-Tronco Multipotentes/citologia , Notocorda/embriologia , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta3/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Open Biol ; 5(8)2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26289800

RESUMO

Vertebrate NCoR-family co-repressors play central roles in the timing of embryo and stem cell differentiation by repressing the activity of a range of transcription factors. They interact with nuclear receptors using short linear motifs (SLiMs) termed co-repressor for nuclear receptor (CoRNR) boxes. Here, we identify the pathway leading to increasing co-repressor diversity across the deuterostomes. The final complement of CoRNR boxes arose in an ancestral cephalochordate, and was encoded in one large exon; the urochordates and vertebrates then split this region between 10 and 12 exons. In Xenopus, alternative splicing is prevalent in NCoR2, but absent in NCoR1. We show for one NCoR1 exon that alternative splicing can be recovered by a single point mutation, suggesting NCoR1 lost the capacity for alternative splicing. Analyses in Xenopus and zebrafish identify that cellular context, rather than gene sequence, predominantly determines species differences in alternative splicing. We identify a pathway to diversity for the NCoR family beginning with the addition of a SLiM, followed by gene duplication, the generation of alternatively spliced isoforms and their differential deployment.


Assuntos
Processamento Alternativo , Motivos de Aminoácidos , Proteínas Correpressoras/química , Proteínas Correpressoras/genética , Éxons , Animais , Sequência de Bases , Sequência Conservada , Dados de Sequência Molecular , Correpressor 1 de Receptor Nuclear/química , Correpressor 1 de Receptor Nuclear/genética , Matrizes de Pontuação de Posição Específica , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Xenopus laevis/genética
4.
Nat Commun ; 5: 5588, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25429520

RESUMO

Haematopoietic stem cells (HSCs) are produced during embryogenesis from the floor of the dorsal aorta. The localization of HSCs is dependent on the presence of instructive signals on the ventral side of the vessel. The nature of the extrinsic molecular signals that control the aortic haematopoietic niche is currently poorly understood. Here we demonstrate a novel requirement for FGF signalling in the specification of aortic haemogenic endothelium. Our results demonstrate that FGF signalling normally acts to repress BMP activity in the subaortic mesenchyme through transcriptional inhibition of bmp4, as well as through activation of two BMP antagonists, noggin2 and gremlin1a. Taken together, these findings demonstrate a key role for FGF signalling in establishment of the developmental HSC niche via its regulation of BMP activity in the subaortic mesenchyme. These results should help inform strategies to recapitulate the development of HSCs in vitro from pluripotent precursors.


Assuntos
Proteína Morfogenética Óssea 4/genética , Proteínas de Transporte/genética , Diferenciação Celular , Endotélio Vascular/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Peixe-Zebra/genética , Animais , Aorta/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Proteínas de Transporte/metabolismo , Mesoderma/metabolismo , Transdução de Sinais , Nicho de Células-Tronco , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
5.
Cancer Cell ; 24(2): 229-41, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23871637

RESUMO

Limited clinical benefits derived from anti-VEGF therapy have driven the identification of new targets involved in tumor angiogenesis. Here, we report an integrative meta-analysis to define the transcriptional program underlying angiogenesis in human cancer. This approach identified ELTD1, an orphan G-protein-coupled receptor whose expression is induced by VEGF/bFGF and repressed by DLL4 signaling. Extensive analysis of multiple cancer types demonstrates significant upregulation of ELTD1 in tumor-associated endothelial cells, with a higher expression correlating with favorable prognosis. Importantly, ELTD1 silencing impairs endothelial sprouting and vessel formation in vitro and in vivo, drastically reducing tumor growth and greatly improving survival. Collectively, these results provide insight into the regulation of tumor angiogenesis and highlight ELTD1 as key player in blood vessel formation.


Assuntos
Células Endoteliais/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Processos de Crescimento Celular/fisiologia , Células Endoteliais/patologia , Feminino , Predisposição Genética para Doença , Células HCT116 , Humanos , Camundongos , Camundongos Nus , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
6.
Development ; 138(15): 3235-45, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21750034

RESUMO

Fibroblast growth factor (Fgf) has been implicated in the control of heart size during development, although whether this is by controlling cell fate, survival or proliferation has not been clear. Here, we show that Fgf, without affecting survival or proliferation, acts during gastrulation to drive cardiac fate and restrict anterior haemangioblast fate in zebrafish embryos. The haemangioblast programme was thought to be activated before the cardiac programme and is repressive towards it, suggesting that activation by Fgf of the cardiac programme might be via suppression of the haemangioblast programme. However, we show that the cardiac regulator nkx2.5 can also repress the haemangioblast programme and, furthermore, that cardiac specification still requires Fgf signalling even when haemangioblast regulators are independently suppressed. We further show that nkx2.5 and the cloche candidate gene lycat are expressed during gastrulation and regulated by Fgf, and that nkx2.5 overexpression, together with loss of the lycat targets etsrp and scl can stably induce expansion of the heart. We conclude that Fgf controls cardiac and haemangioblast fates by the simultaneous regulation of haemangioblast and cardiac regulators. We propose that elevation of Fgf signalling in the anterior haemangioblast territory could have led to its recruitment into the heart field during evolution, increasing the size of the heart.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Coração/embriologia , Hemangioblastos/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Proliferação de Células , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/fisiologia , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Coração/anatomia & histologia , Coração/crescimento & desenvolvimento , Coração/fisiologia , Hemangioblastos/citologia , Proteína Homeobox Nkx-2.5 , Morfogênese/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
7.
Circ Res ; 108(1): 129-52, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21212394

RESUMO

Cardiac muscle creation during embryogenesis requires extracellular instructive signals that are regulated precisely in time and space, intersecting with intracellular genetic programs that confer or fashion the ability of the cells to respond. Unmasking the essential signals for cardiac lineage decisions has paramount importance for cardiac development and regenerative medicine, including the directed differentiation of progenitor and stem cells to a cardiac muscle fate.


Assuntos
Diferenciação Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Miocárdio/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Animais , Humanos , Células-Tronco/citologia
8.
Development ; 136(9): 1465-74, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19297410

RESUMO

Over the past few years it has become clear that over half of the mammalian heart derives from outside the heart field as originally defined. Such a second heart field, however, has not been described in zebrafish, which could explain its smaller, two-chambered heart. Instead, zebrafish have a population of haemangioblasts, which is absent in mammalian embryos, raising the possibility that these cells represent the evolutionary ancestor of the second heart field. Here, we show for the first time that the genetic programmes of these anterior haemangioblasts and the adjacent heart field are co-regulated, by transcription factors previously associated with heart but not blood or endothelial development. We demonstrate that gata4, gata5 and gata6 are essential for anterior haemangioblast specification, and for subsequent myelopoiesis, acting as early as cloche and upstream of scl. The requirement for gata4, gata5 and gata6 in myeloid, endothelial and cardiac specification is in the mesoderm, but these factors also control, from within the endoderm and the yolk syncytial layer, the migration of the cardiac precursors as they differentiate. This genetic link between the blood/endothelial and cardiac programmes supports the notion that this haemangioblast population in zebrafish is an evolutionary antecedent of the second heart field, and has implications for the differentiation of haemangioblasts and cardiomyocytes from pluripotent cells, and for the origins of stem cells in the adult heart.


Assuntos
Coração/embriologia , Hemangioblastos/metabolismo , Miocárdio/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem da Célula , Movimento Celular , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Endoderma/citologia , Endoderma/embriologia , Endoderma/metabolismo , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Fator de Transcrição GATA5/genética , Fator de Transcrição GATA5/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Dev Biol ; 311(2): 623-35, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17869240

RESUMO

The transcription factors, GATA4, 5 and 6, recognize the same DNA sequence and are all expressed in the developing myocardium. However, knockout studies in the mouse have indicated that none of them are absolutely required for the specification of the myocardium. Here we present evidence for redundancy in this family for the first time. Using morpholinos in both Xenopus and zebrafish embryos, we show that GATA4 knockdown, for example, only affects cardiac marker expression in the absence of either GATA5 or GATA6. A similar situation pertains for GATA5 in Xenopus whereas, in zebrafish, GATA5 (faust) plays a major role in driving the myocardial programme. This requirement for GATA5 in zebrafish is for induction of the myocardium, in contrast to the GATA6 requirement in both species, which is for differentiation. This early role for GATA5 in zebrafish correlates with its earlier expression and with an earlier requirement for BMP signalling, suggesting that a mutual maintenance loop for GATA, BMP and Nkx expression is the evolutionarily conserved entity.


Assuntos
Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA5/metabolismo , Coração , Miocárdio , Proteínas de Xenopus/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Diferenciação Celular , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/fisiologia , Indução Embrionária , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA5/genética , Coração/anatomia & histologia , Coração/embriologia , Coração/crescimento & desenvolvimento , Hibridização In Situ , Camundongos , Morfogênese , Miocárdio/citologia , Miocárdio/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/fisiologia , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
10.
Semin Cell Dev Biol ; 16(1): 83-94, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15659343

RESUMO

The transcription factors GATA-4, -5 and -6 are expressed very early in heart tissue. Essential GATA sites have been detected in several cardiac genes and the cardiac GATA factors interact with a wide variety of cofactors which synergistically increase gene expression. These multi-protein transcriptional complexes confer promoter-specificity on the GATA factors and also on the more broadly expressed cofactors. Here we summarise the data on these interactions and represent the conclusions as a GATA factor-based genetic regulatory network for the heart. Of the three cardiac GATAs, GATA-4 is by far the most extensively studied, however, loss-of-function data question its presumed dominance during heart development as opposed to hypertrophy.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Coração/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Vertebrados/crescimento & desenvolvimento , Animais , Proteínas de Ligação a DNA/genética , Fator de Transcrição GATA4 , Fator de Transcrição GATA5 , Fator de Transcrição GATA6 , Regulação da Expressão Gênica , Fatores de Transcrição/genética
11.
EMBO J ; 22(16): 4260-73, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12912923

RESUMO

GATA-6 is expressed in presumptive cardiac mesoderm before gastrulation, but its role in heart development has been unclear. Here we show that Xenopus and zebrafish embryos, injected with antisense morpholino oligonucleotides designed specifically to knock-down translation of GATA-6 protein, are severely compromised for heart development. Injected embryos express greatly reduced levels of contractile machinery genes and, at the same stage, of regulatory genes such as bone morphogenetic protein-4 (BMP-4) and the Nkx2 family. In contrast, initial BMP and Nkx2 expression is normal, suggesting a maintenance role for GATA-6. Endoderm is critical for heart formation in several vertebrates including Xenopus, and separate perturbation of GATA-6 expression in the deep anterior endoderm and in the overlying heart mesoderm shows that GATA-6 is required in both for cardiogenesis. The GATA-6 requirement in cardiac mesoderm was confirmed in zebrafish, an organism in which endoderm is thought not to be necessary for heart formation. We therefore conclude that proper maturation of cardiac mesoderm requires GATA-6, which functions to maintain BMP-4 and Nkx2 expression.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Miócitos Cardíacos/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Sequência de Bases , Proteína Morfogenética Óssea 4 , Diferenciação Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Endoderma/fisiologia , Fator de Transcrição GATA6 , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteína Homeobox Nkx-2.5 , Humanos , Mesoderma/fisiologia , Modelos Biológicos , Dados de Sequência Molecular , Miócitos Cardíacos/citologia , Oligonucleotídeos Antissenso/farmacologia , Isoformas de Proteínas/química , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/deficiência , Fatores de Transcrição/efeitos dos fármacos , Xenopus/embriologia , Peixe-Zebra/embriologia , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA