Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Org Biol ; 4(1): obac048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518181

RESUMO

Stability-maneuverability tradeoffs impose various constraints on aquatic locomotion. The fossil record houses a massive morphological dataset that documents how organisms have encountered these tradeoffs in an evolutionary framework. Externally shelled cephalopods (e.g., ammonoids and nautiloids) are excellent targets to study physical tradeoffs because they experimented with numerous conch morphologies during their long-lived evolutionary history (around 0.5 billion years). The tradeoff between hydrostatic stability and maneuverability was investigated with neutrally buoyant biomimetic models, engineered to have the same mass distributions computed for their once-living counterparts. Monitoring rocking behavior with 3D motion tracking reveals how stability influenced the life habits of these animals. Cephalopods with short body chambers and rapid whorl expansion (oxycones) more quickly attenuate rocking, while cephalopods with long body chambers (serpenticones and sphaerocones) had improved pitch maneuverability. Disparate conch morphologies presented broad functional opportunities to these animals, imposing several advantages and consequences across the morphospace. These animals navigated inescapable physical constraints enforced by conch geometry, illuminating key relationships between functional diversity and morphological disparity in aquatic ecosystems. Our modeling techniques correct for differences in material properties between physical models and those inferred for their living counterparts. This approach provides engineering solutions to the obstacles created by buoyancy, mass distributions, and moments of inertia, permitting more lifelike, free-swimming biomechanical models and aquatic robots.

2.
Sci Rep ; 12(1): 11287, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787639

RESUMO

Externally shelled cephalopods with coiled, planispiral conchs were ecologically successful for hundreds of millions of years. These animals displayed remarkable morphological disparity, reflecting comparable differences in physical properties that would have constrained their life habits and ecological roles. To investigate these constraints, self-propelling, neutrally buoyant, biomimetic robots were 3D-printed for four disparate morphologies. These robots were engineered to assume orientations computed from virtual hydrostatic simulations while producing Nautilus-like thrusts. Compressed morphotypes had improved hydrodynamic stability (coasting efficiency) and experienced lower drag while jetting backwards. However, inflated morphotypes had improved maneuverability while rotating about the vertical axis. These differences highlight an inescapable physical tradeoff between hydrodynamic stability and yaw maneuverability, illuminating different functional advantages and life-habit constraints across the cephalopod morphospace. This tradeoff reveals there is no single optimum conch morphology, and elucidates the success and iterative evolution of disparate morphologies through deep time, including non-streamlined forms.


Assuntos
Cefalópodes , Robótica , Animais , Biomimética , Cefalópodes/anatomia & histologia , Hábitos , Hidrodinâmica
3.
PeerJ ; 9: e11797, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34316410

RESUMO

Measuring locomotion tactics available to ancient sea animals can link functional morphology with evolution and ecology over geologic timescales. Externally-shelled cephalopods are particularly important for their central roles in marine trophic exchanges, but most fossil taxa lack sufficient modern analogues for comparison. In particular, phylogenetically diverse cephalopods produced orthoconic conchs (straight shells) repeatedly through time. Persistent re-evolution of this morphotype suggests that it possesses adaptive value. Practical lateral propulsion is ruled out as an adaptive driver among orthoconic cephalopods due to the stable, vertical orientations of taxa lacking sufficient counterweights. However, this constraint grants the possibility of rapid (or at least efficient) vertical propulsion. We experiment with this form of movement using 3D-printed models of Baculites compressus, weighted to mimic hydrostatic properties inferred by virtual models. Furthermore, model buoyancy was manipulated to impart simulated thrust within four independent scenarios (Nautilus-like cruising thrust; a similar thrust scaled by the mantle cavity of Sepia; sustained peak Nautilus-like thrust; and passive, slightly negative buoyancy). Each model was monitored underwater with two submerged cameras as they rose/fell over ~2 m, and their kinematics were computed with 3D motion tracking. Our results demonstrate that orthocones require very low input thrust for high output in movement and velocity. With Nautilus-like peak thrust, the model reaches velocities of 1.2 m/s (2.1 body lengths per second) within one second starting from a static initial condition. While cephalopods with orthoconic conchs likely assumed a variety of life habits, these experiments illuminate some first-order constraints. Low hydrodynamic drag inferred by vertical displacement suggests that vertical migration would incur very low metabolic cost. While these cephalopods likely assumed low energy lifestyles day-to-day, they may have had a fighting chance to escape from larger, faster predators by performing quick, upward dodges. The current experiments suggest that orthocones sacrifice horizontal mobility and maneuverability in exchange for highly streamlined, vertically-stable, upwardly-motile conchs.

4.
Sci Rep ; 11(1): 8055, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850189

RESUMO

The internal architecture of chambered ammonoid conchs profoundly increased in complexity through geologic time, but the adaptive value of these structures is disputed. Specifically, these cephalopods developed fractal-like folds along the edges of their internal divider walls (septa). Traditionally, functional explanations for septal complexity have largely focused on biomechanical stress resistance. However, the impact of these structures on buoyancy manipulation deserves fresh scrutiny. We propose increased septal complexity conveyed comparable shifts in fluid retention capacity within each chamber. We test this interpretation by measuring the liquid retained by septa, and within entire chambers, in several 3D-printed cephalopod shell archetypes, treated with (and without) biomimetic hydrophilic coatings. Results show that surface tension regulates water retention capacity in the chambers, which positively scales with septal complexity and membrane capillarity, and negatively scales with size. A greater capacity for liquid retention in ammonoids may have improved buoyancy regulation, or compensated for mass changes during life. Increased liquid retention in our experiments demonstrate an increase in areas of greater surface tension potential, supporting improved chamber refilling. These findings support interpretations that ammonoids with complex sutures may have had more active buoyancy regulation compared to other groups of ectocochleate cephalopods. Overall, the relationship between septal complexity and liquid retention capacity through surface tension presents a robust yet simple functional explanation for the mechanisms driving this global biotic pattern.

5.
Biol Rev Camb Philos Soc ; 96(2): 576-610, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33438316

RESUMO

Heteromorphs are ammonoids forming a conch with detached whorls (open coiling) or non-planispiral coiling. Such aberrant forms appeared convergently four times within this extinct group of cephalopods. Since Wiedmann's seminal paper in this journal, the palaeobiology of heteromorphs has advanced substantially. Combining direct evidence from their fossil record, indirect insights from phylogenetic bracketing, and physical as well as virtual models, we reach an improved understanding of heteromorph ammonoid palaeobiology. Their anatomy, buoyancy, locomotion, predators, diet, palaeoecology, and extinction are discussed. Based on phylogenetic bracketing with nautiloids and coleoids, heteromorphs like other ammonoids had 10 arms, a well-developed brain, lens eyes, a buccal mass with a radula and a smaller upper as well as a larger lower jaw, and ammonia in their soft tissue. Heteromorphs likely lacked arm suckers, hooks, tentacles, a hood, and an ink sac. All Cretaceous heteromorphs share an aptychus-type lower jaw with a lamellar calcitic covering. Differences in radular tooth morphology and size in heteromorphs suggest a microphagous diet. Stomach contents of heteromorphs comprise planktic crustaceans, gastropods, and crinoids, suggesting a zooplanktic diet. Forms with a U-shaped body chamber (ancylocone) are regarded as suspension feeders, whereas orthoconic forms additionally might have consumed benthic prey. Heteromorphs could achieve near-neutral buoyancy regardless of conch shape or ontogeny. Orthoconic heteromorphs likely had a vertical orientation, whereas ancylocone heteromorphs had a near-horizontal aperture pointing upwards. Heteromorphs with a U-shaped body chamber are more stable hydrodynamically than modern Nautilus and were unable substantially to modify their orientation by active locomotion, i.e. they had no or limited access to benthic prey at adulthood. Pathologies reported for heteromorphs were likely inflicted by crustaceans, fish, marine reptiles, and other cephalopods. Pathologies on Ptychoceras corroborates an external shell and rejects the endocochleate hypothesis. Devonian, Triassic, and Jurassic heteromorphs had a preference for deep-subtidal to offshore facies but are rare in shallow-subtidal, slope, and bathyal facies. Early Cretaceous heteromorphs preferred deep-subtidal to bathyal facies. Late Cretaceous heteromorphs are common in shallow-subtidal to offshore facies. Oxygen isotope data suggest rapid growth and a demersal habitat for adult Discoscaphites and Baculites. A benthic embryonic stage, planktic hatchlings, and a habitat change after one whorl is proposed for Hoploscaphites. Carbon isotope data indicate that some Baculites lived throughout their lives at cold seeps. Adaptation to a planktic life habit potentially drove selection towards smaller hatchlings, implying high fecundity and an ecological role of the hatchlings as micro- and mesoplankton. The Chicxulub impact at the Cretaceous/Paleogene (K/Pg) boundary 66 million years ago is the likely trigger for the extinction of ammonoids. Ammonoids likely persisted after this event for 40-500 thousand years and are exclusively represented by heteromorphs. The ammonoid extinction is linked to their small hatchling sizes, planktotrophic diets, and higher metabolic rates than in nautilids, which survived the K/Pg mass extinction event.


Assuntos
Cefalópodes , Animais , Ecossistema , Extinção Biológica , Fósseis , Filogenia
6.
PLoS One ; 15(8): e0235180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760063

RESUMO

Nipponites is a heteromorph ammonoid with a complex and unique morphology that obscures its mode of life and ethology. The seemingly aberrant shell of this Late Cretaceous nostoceratid seems deleterious. However, hydrostatic simulations suggest that this morphology confers several advantages for exploiting a quasi-planktic mode of life. Virtual, 3D models of Nipponites mirabilis were used to compute various hydrostatic properties through 14 ontogenetic stages. At each stage, Nipponites had the capacity for neutral buoyancy and was not restricted to the seafloor. Throughout ontogeny, horizontally facing to upwardly facing soft body orientations were preferred at rest. These orientations were aided by the obliquity of the shell's ribs, which denote former positions of the aperture that were tilted from the growth direction of the shell. Static orientations were somewhat fixed, inferred by stability values that are slightly higher than extant Nautilus. The initial open-whorled, planispiral phase is well suited to horizontal backwards movement with little rocking. Nipponites then deviated from this bilaterally symmetric coiling pattern with a series of alternating U-shaped bends in the shell. This modification allows for proficient rotation about the vertical axis, while possibly maintaining the option for horizontal backwards movement by redirecting its hyponome. These particular hydrostatic properties likely result in a tradeoff between hydrodynamic streamlining, suggesting that Nipponites assumed a low energy lifestyle of slowly pirouetting in search for planktic prey. Each computed hydrostatic property influences the others in some way, suggesting that Nipponites maintained a delicate hydrostatic balancing act throughout its ontogeny in order to facilitate this mode of life.


Assuntos
Exoesqueleto/crescimento & desenvolvimento , Evolução Biológica , Cefalópodes/fisiologia , Movimento/fisiologia , Exoesqueleto/anatomia & histologia , Animais , Cefalópodes/anatomia & histologia , Pressão Hidrostática , Modelos Anatômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA