Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 93, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414030

RESUMO

BACKGROUND: Vesicular stomatitis virus (VSV), a vector-borne pathogen of livestock, emerges periodically in the western US. In New Mexico (NM), US, most cases occur close to the Rio Grande River, implicating black flies (Simulium spp.) as a possible vector. In 2020, VS cases were reported in NM from April to May, although total black fly abundance remained high until September. We investigated the hypothesis that transience of local VSV transmission results from transient abundance of key, competent black fly species. Additionally, we investigated whether irrigation canals in southern NM support a different community of black flies than the main river. Lastly, to gain insight into the source of local black flies, in 2023 we collected black fly larvae prior to the release of water into the Rio Grande River channel. METHODS: We randomly sub-sampled adult black flies collected along the Rio Grande during and after the 2020 VSV outbreak. We also collected black fly adults along the river in 2021 and 2022 and at southern NM farms and irrigation canals in 2022. Black fly larvae were collected from dams in the area in 2023. All collections were counted, and individual specimens were subjected to molecular barcoding for species identification. RESULTS: DNA barcoding of adult black flies detected four species in 2020: Simulium meridionale (N = 158), S. mediovittatum (N = 83), S. robynae (N = 26) and S. griseum/notatum (N = 1). Simulium robynae was only detected during the VSV outbreak period, S. meridionale showed higher relative abundance, but lower absolute abundance, during the outbreak than post-outbreak period, and S. mediovittatum was rare during the outbreak period but predominated later in the summer. In 2022, relative abundance of black fly species did not differ significantly between the Rio Grande sites and farm and irrigation canals. Intriguingly, 63 larval black flies comprised 56% Simulium vittatum, 43% S. argus and 1% S. encisoi species that were either extremely rare or not detected in previous adult collections. CONCLUSIONS: Our results suggest that S. robynae and S. meridionale could be shaping patterns of VSV transmission in southern NM. Thus, field studies of the source of these species as well as vector competence studies are warranted.


Assuntos
Simuliidae , Estomatite Vesicular , Animais , Estomatite Vesicular/epidemiologia , New Mexico/epidemiologia , Insetos Vetores , Vesiculovirus , Larva , Surtos de Doenças
2.
Bioscience ; 72(9): 889-907, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36034512

RESUMO

Long-term observations and experiments in diverse drylands reveal how ecosystems and services are responding to climate change. To develop generalities about climate change impacts at dryland sites, we compared broadscale patterns in climate and synthesized primary production responses among the eight terrestrial, nonforested sites of the United States Long-Term Ecological Research (US LTER) Network located in temperate (Southwest and Midwest) and polar (Arctic and Antarctic) regions. All sites experienced warming in recent decades, whereas drought varied regionally with multidecadal phases. Multiple years of wet or dry conditions had larger effects than single years on primary production. Droughts, floods, and wildfires altered resource availability and restructured plant communities, with greater impacts on primary production than warming alone. During severe regional droughts, air pollution from wildfire and dust events peaked. Studies at US LTER drylands over more than 40 years demonstrate reciprocal links and feedbacks among dryland ecosystems, climate-driven disturbance events, and climate change.

3.
Viruses ; 13(9)2021 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-34578392

RESUMO

Mosquito-borne West Nile virus (WNV) is the causative agent of West Nile disease in humans, horses, and some bird species. Since the initial introduction of WNV to the United States (US), approximately 30,000 horses have been impacted by West Nile neurologic disease and hundreds of additional horses are infected each year. Research describing the drivers of West Nile disease in horses is greatly needed to better anticipate the spatial and temporal extent of disease risk, improve disease surveillance, and alleviate future economic impacts to the equine industry and private horse owners. To help meet this need, we integrated techniques from spatiotemporal epidemiology, eco-phylogenetics, and distributional ecology to assess West Nile disease risk in horses throughout the contiguous US. Our integrated approach considered horse abundance and virus exposure, vector and host distributions, and a variety of extrinsic climatic, socio-economic, and environmental risk factors. Birds are WNV reservoir hosts, and therefore we quantified avian host community dynamics across the continental US to show intra-annual variability in host phylogenetic structure and demonstrate host phylodiversity as a mechanism for virus amplification in time and virus dilution in space. We identified drought as a potential amplifier of virus transmission and demonstrated the importance of accounting for spatial non-stationarity when quantifying interaction between disease risk and meteorological influences such as temperature and precipitation. Our results delineated the timing and location of several areas at high risk of West Nile disease and can be used to prioritize vaccination programs and optimize virus surveillance and monitoring.


Assuntos
Surtos de Doenças/veterinária , Reservatórios de Doenças/veterinária , Ecologia , Filogenia , Análise Espaço-Temporal , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/classificação , Vírus do Nilo Ocidental/genética , Animais , Aves/virologia , Culicidae/virologia , Reservatórios de Doenças/virologia , Cavalos/virologia , Mosquitos Vetores/virologia , Estações do Ano , Febre do Nilo Ocidental/transmissão
4.
Pathogens ; 10(8)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34451457

RESUMO

Vesicular stomatitis (VS) is a vector-borne livestock disease caused by vesicular stomatitis New Jersey virus (VSNJV) or vesicular stomatitis Indiana virus (VSIV). The disease circulates endemically in northern South America, Central America, and Mexico and only occasionally causes outbreaks in the United States. Over the past 20 years, VSNJV outbreaks in the southwestern and Rocky Mountain regions occurred with incursion years followed by virus overwintering and subsequent expansion outbreak years. Regulatory response by animal health officials is deployed to prevent spread from lesioned animals. The 2019 VS incursion was the largest in 40 years, lasting from June to December 2019 with 1144 VS-affected premises in 111 counties in eight states (Colorado, Kansas, Nebraska, New Mexico, Oklahoma, Texas, Utah, and Wyoming) and was VSIV serotype, last isolated in 1998. A subsequent expansion occurred from April to October 2020 with 326 VS-affected premises in 70 counties in eight states (Arizona, Arkansas, Kansas, Missouri, Nebraska, New Mexico, Oklahoma, and Texas). The primary serotype in 2020 was VSIV, but a separate incursion of VSNJV occurred in south Texas. Summary characteristics of the outbreaks are presented along with VSV-vector sampling results and phylogenetic analysis of VSIV isolates providing evidence of virus overwintering.

5.
Viruses ; 13(5)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070039

RESUMO

West Nile virus (WNV) is the most common arthropod-borne virus (arbovirus) in the United States (US) and is the leading cause of viral encephalitis in the country. The virus has affected tens of thousands of US persons total since its 1999 North America introduction, with thousands of new infections reported annually. Approximately 1% of humans infected with WNV acquire neuroinvasive West Nile Disease (WND) with severe encephalitis and risk of death. Research describing WNV ecology is needed to improve public health surveillance, monitoring, and risk assessment. We applied Bayesian joint-spatiotemporal modeling to assess the association of vector surveillance data, host species richness, and a variety of other environmental and socioeconomic disease risk factors with neuroinvasive WND throughout the conterminous US. Our research revealed that an aging human population was the strongest disease indicator, but climatic and vector-host biotic interactions were also significant in determining risk of neuroinvasive WND. Our analysis also identified a geographic region of disproportionately high neuroinvasive WND disease risk that parallels the Continental Divide, and extends southward from the US-Canada border in the states of Montana, North Dakota, and Wisconsin to the US-Mexico border in western Texas. Our results aid in unraveling complex WNV ecology and can be applied to prioritize disease surveillance locations and risk assessment.


Assuntos
Vetores de Doenças , Especificidade de Hospedeiro , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/fisiologia , Animais , Demografia , Humanos , Vigilância da População , Medição de Risco , Fatores de Risco
6.
J Equine Vet Sci ; 90: 103026, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32534788

RESUMO

Vesicular stomatitis viruses (VSVs) cause a condition known as vesicular stomatitis (VS), which results in painful lesions in equines, cattle, swine, and camelids, and when transmitted to humans, can cause flu-like symptoms. When animal premises are affected by VS, they are subject to a quarantine. The equine industry more broadly may incur economic losses due to interruptions of animal trade and transportation to shows, competitions, and other events. Equine owners, barn managers, and veterinarians can take proactive measures to reduce the risk of equines contracting VS. To identify appropriate risk management strategies, it helps to understand which biting insects are capable of transmitting the virus to animals, and to identify these insect vectors' preferred habitats and behaviors. We make this area of science more accessible to equine owners, barn managers, and veterinarians, by (1) translating the most relevant scientific information about biting insect vectors of VSV and (2) identifying practical management strategies that might reduce the risk of equines contracting VSV from infectious biting insects or from other equines already infected with VSV. We address transmission risk at four different spatial scales-the animal, the barn/shelter, the barnyard/premises, and the surrounding environment/neighborhood-noting that a multiscale and spatially collaborative strategy may be needed to reduce the risk of VS.


Assuntos
Doenças dos Bovinos , Doenças dos Cavalos , Doenças dos Suínos , Estomatite Vesicular , Vesiculovirus , Animais , Bovinos , Doenças dos Cavalos/prevenção & controle , Cavalos , Insetos Vetores , Suínos , Estados Unidos , Estomatite Vesicular/prevenção & controle , Vírus da Estomatite Vesicular Indiana
7.
Sci Rep ; 10(1): 8112, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415221

RESUMO

Woody plant encroachment (WPE) into grasslands is a global phenomenon that is associated with land degradation via xerification, which replaces grasses with shrubs and bare soil patches. It remains uncertain how the global processes of WPE and climate change may combine to impact water availability for ecosystems. Using a process-based model constrained by watershed observations, our results suggest that both xerification and climate change augment groundwater recharge by increasing channel transmission losses at the expense of plant available water. Conversion from grasslands to shrublands without creating additional bare soil, however, reduces transmission losses. Model simulations considering both WPE and climate change are used to assess their relative roles in a late 21st century condition. Results indicate that changes in focused channel recharge are determined primarily by the WPE pathway. As a result, WPE should be given consideration when assessing the vulnerability of groundwater aquifers to climate change.

8.
Ecology ; 101(9): e03069, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32297657

RESUMO

Alternative states maintained by feedbacks are notoriously difficult, if not impossible, to reverse. Although positive interactions that modify soil conditions may have the greatest potential to alter self-reinforcing feedbacks, the conditions leading to these state change reversals have not been resolved. In a 9-yr study, we modified horizontal connectivity of resources by wind or water on different geomorphic surfaces in an attempt to alter plant-soil feedbacks and shift woody-plant-dominated states back toward perennial grass dominance. Modifying connectivity resulted in an increase in litter cover regardless of the vector of transport (wind, water) followed by an increase in perennial grass cover 2 yr later. Modifying connectivity was most effective on sandy soils where wind is the dominant vector, and least effective on gravelly soils on stable surfaces with low sediment movement by water. We found that grass cover was related to precipitation in the first 5 yr of our study, and plant-soil feedbacks developed following 6 yr of modified connectivity to overwhelm effects of precipitation on sandy, wind-blown soils. These feedbacks persisted through time under variable annual rainfall. On alluvial soils, either plant-soil feedbacks developed after 7 yr that were not persistent (active soils) or did not develop (stable soils). This novel approach has application to drylands globally where desertified lands have suffered losses in ecosystem services, and to other ecosystems where connectivity-mediated feedbacks modified at fine scales can be expected to impact plant recovery and state change reversals at larger scales, in particular for wind-impacted sites.


Assuntos
Ecossistema , Solo , Retroalimentação , Plantas , Poaceae
9.
Glob Chang Biol ; 25(10): 3305-3318, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31180158

RESUMO

Dryland vegetation is influenced by biotic and abiotic land surface template (LST) conditions and precipitation (PPT), such that enhanced vegetation responses to periods of high PPT may be shaped by multiple factors. High PPT stochasticity in the Chihuahuan Desert suggests that enhanced responses across broad geographic areas are improbable. Yet, multiyear wet periods may homogenize PPT patterns, interact with favorable LST conditions, and in this way produce enhanced responses. In contrast, periods containing multiple extreme high PPT pulse events could overwhelm LST influences, suggesting a divergence in how climate change could influence vegetation by altering PPT periods. Using a suite of stacked remote sensing and LST datasets from the 1980s to the present, we evaluated PPT-LST-Vegetation relationships across this region and tested the hypothesis that enhanced vegetation responses would be initiated by high PPT, but that LST favorability would underlie response magnitude, producing geographic differences between wet periods. We focused on two multiyear wet periods; one of above average, regionally distributed PPT (1990-1993) and a second with locally distributed PPT that contained two extreme wet pulses (2006-2008). 1990-1993 had regional vegetation responses that were correlated with soil properties. 2006-2008 had higher vegetation responses over a smaller area that were correlated primarily with PPT and secondarily to soil properties. Within the overlapping PPT area of both periods, enhanced vegetation responses occurred in similar locations. Thus, LST favorability underlied the geographic pattern of vegetation responses, whereas PPT initiated the response and controlled response area and maximum response magnitude. Multiyear periods provide foresight on the differing impacts that directional changes in mean climate and changes in extreme PPT pulses could have in drylands. Our study shows that future vegetation responses during wet periods will be tied to LST favorability, yet will be shaped by the pattern and magnitude of multiyear PPT events.


Assuntos
Mudança Climática , Solo , Meio Ambiente
10.
Glob Chang Biol ; 24(5): 1935-1951, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29265568

RESUMO

There is considerable uncertainty in the magnitude and direction of changes in precipitation associated with climate change, and ecosystem responses are also uncertain. Multiyear periods of above- and below-average rainfall may foretell consequences of changes in rainfall regime. We compiled long-term aboveground net primary productivity (ANPP) and precipitation (PPT) data for eight North American grasslands, and quantified relationships between ANPP and PPT at each site, and in 1-3 year periods of above- and below-average rainfall for mesic, semiarid cool, and semiarid warm grassland types. Our objective was to improve understanding of ANPP dynamics associated with changing climatic conditions by contrasting PPT-ANPP relationships in above- and below-average PPT years to those that occurred during sequences of multiple above- and below-average years. We found differences in PPT-ANPP relationships in above- and below-average years compared to long-term site averages, and variation in ANPP not explained by PPT totals that likely are attributed to legacy effects. The correlation between ANPP and current- and prior-year conditions changed from year to year throughout multiyear periods, with some legacy effects declining, and new responses emerging. Thus, ANPP in a given year was influenced by sequences of conditions that varied across grassland types and climates. Most importantly, the influence of prior-year ANPP often increased with the length of multiyear periods, whereas the influence of the amount of current-year PPT declined. Although the mechanisms by which a directional change in the frequency of above- and below-average years imposes a persistent change in grassland ANPP require further investigation, our results emphasize the importance of legacy effects on productivity for sequences of above- vs. below-average years, and illustrate the utility of long-term data to examine these patterns.


Assuntos
Pradaria , Chuva , Mudança Climática , Poaceae/fisiologia
11.
Conserv Biol ; 30(1): 42-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26390368

RESUMO

Ecological systems often operate on time scales significantly longer or shorter than the time scales typical of human decision making, which causes substantial difficulty for conservation and management in socioecological systems. For example, invasive species may move faster than humans can diagnose problems and initiate solutions, and climate systems may exhibit long-term inertia and short-term fluctuations that obscure learning about the efficacy of management efforts in many ecological systems. We adopted a management-decision framework that distinguishes decision makers within public institutions from individual actors within the social system, calls attention to the ways socioecological systems respond to decision makers' actions, and notes institutional learning that accrues from observing these responses. We used this framework, along with insights from bedeviling conservation problems, to create a typology that identifies problematic time-scale mismatches occurring between individual decision makers in public institutions and between individual actors in the social or ecological system. We also considered solutions that involve modifying human perception and behavior at the individual level as a means of resolving these problematic mismatches. The potential solutions are derived from the behavioral economics and psychology literature on temporal challenges in decision making, such as the human tendency to discount future outcomes at irrationally high rates. These solutions range from framing environmental decisions to enhance the salience of long-term consequences, to using structured decision processes that make time scales of actions and consequences more explicit, to structural solutions aimed at altering the consequences of short-sighted behavior to make it less appealing. Additional application of these tools and long-term evaluation measures that assess not just behavioral changes but also associated changes in ecological systems are needed.


Assuntos
Conservação dos Recursos Naturais/métodos , Tomada de Decisões , Política Ambiental , Fatores de Tempo
12.
Ecology ; 95(8): 2121-33, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25230464

RESUMO

Grasslands across the United States play a key role in regional livelihood and national food security. Yet, it is still unclear how this important resource will respond to the prolonged warm droughts and more intense rainfall events predicted with climate change. The early 21st-century drought in the southwestern United States resulted in hydroclimatic conditions that are similar to those expected with future climate change. We investigated the impact of the early 21st-century drought on aboveground net primary production (ANPP) of six desert and plains grasslands dominated by C4 (warm season) grasses in terms of significant deviations between observed and expected ANPP. In desert grasslands, drought-induced grass mortality led to shifts in the functional response to annual total precipitation (P(T)), and in some cases, new species assemblages occurred that included invasive species. In contrast, the ANPP in plains grasslands exhibited a strong linear function of the current-year P(T) and the previous-year ANPP, despite prolonged warm drought. We used these results to disentangle the impacts of interannual total precipitation, intra-annual precipitation patterns, and grassland abundance on ANPP, and thus generalize the functional response of C4 grasslands to predicted climate change. This will allow managers to plan for predictable shifts in resources associated with climate change related to fire risk, loss of forage, and ecosystem services.


Assuntos
Secas/história , Ecossistema , História do Século XXI , Espécies Introduzidas , Chuva , Estações do Ano , Fatores de Tempo , Estados Unidos
13.
Glob Chang Biol ; 20(8): 2631-43, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24399762

RESUMO

Climate change will result in reduced soil water availability in much of the world either due to changes in precipitation or increased temperature and evapotranspiration. How communities of mites and nematodes may respond to changes in moisture availability is not well known, yet these organisms play important roles in decomposition and nutrient cycling processes. We determined how communities of these organisms respond to changes in moisture availability and whether common patterns occur along fine-scale gradients of soil moisture within four individual ecosystem types (mesic, xeric and arid grasslands and a polar desert) located in the western United States and Antarctica, as well as across a cross-ecosystem moisture gradient (CEMG) of all four ecosystems considered together. An elevation transect of three sampling plots was monitored within each ecosystem and soil samples were collected from these plots and from existing experimental precipitation manipulations within each ecosystem once in fall of 2009 and three times each in 2010 and 2011. Mites and nematodes were sorted to trophic groups and analyzed to determine community responses to changes in soil moisture availability. We found that while both mites and nematodes increased with available soil moisture across the CEMG, within individual ecosystems, increases in soil moisture resulted in decreases to nematode communities at all but the arid grassland ecosystem; mites showed no responses at any ecosystem. In addition, we found changes in proportional abundances of mite and nematode trophic groups as soil moisture increased within individual ecosystems, which may result in shifts within soil food webs with important consequences for ecosystem functioning. We suggest that communities of soil animals at local scales may respond predictably to changes in moisture availability regardless of ecosystem type but that additional factors, such as climate variability, vegetation composition, and soil properties may influence this relationship over larger scales.


Assuntos
Mudança Climática , Ácaros , Nematoides , Solo/química , Água/análise , Animais , Regiões Antárticas , Ecossistema , Cadeia Alimentar , Densidade Demográfica , Estados Unidos
14.
Oecologia ; 174(4): 1323-34, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24263235

RESUMO

Multi-year climatic periods are expected to increase with global change, yet long-term data are often insufficient to document factors leading to ecological responses. We used a suite of long-term datasets (1993-2010) to examine the processes underlying different relationships between aboveground net primary production (ANPP) and precipitation in wet and dry rainfall periods in shrublands and grasslands in the Chihuahuan Desert. We hypothesized that trends in ANPP can be explained by different processes associated with their dominant grasses [Bouteloua eriopoda (grasslands); Sporobolus flexuosus (shrublands)] and with ecosystem properties that influence soil water dynamics with feedbacks to ANPP. We compared datasets on recruitment and growth for 7 years with no trend in precipitation followed by a 4-year drought and 5 consecutive wet years. We integrated these data in a simulation model to examine the importance of positive feedbacks. In grasslands, ANPP was linearly related to precipitation regardless of rainfall period, primarily as a result of stolon recruitment by B. eriopoda. A lag in responses suggests the importance of legacies associated with stolon density. In shrublands, ANPP was only related to rainfall in the wet period when it increased nonlinearly as the number of wet years increased. Seed availability increased in the first wet year, and seedling establishment occurred 2-4 years later. Increases in biomass, litter and simulated transpiration beginning in the third year corresponded with increases in ANPP. Understanding the processes underlying ecosystem dynamics in multi-year dry or wet periods is expected to improve predictions under directional increases or decreases in rainfall.


Assuntos
Clima , Secas , Poaceae/crescimento & desenvolvimento , Chuva , Biomassa , Modelos Teóricos , New Mexico , Estações do Ano , Sementes/crescimento & desenvolvimento , Solo , Água
15.
Ecology ; 94(9): 2030-41, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24279274

RESUMO

The performance of many desert plant species in North America may decline with the warmer and drier conditions predicted by climate change models, thereby accelerating land degradation and reducing ecosystem productivity. We paired repeat measurements of plant canopy cover with climate at multiple sites across the Chihuahuan Desert over the last century to determine which plant species and functional types may be the most sensitive to climate change. We found that the dominant perennial grass, Bouteloua eriopoda, and species richness had nonlinear responses to summer precipitation, decreasing more in dry summers than increasing with wet summers. Dominant shrub species responded differently to the seasonality of precipitation and drought, but winter precipitation best explained changes in the cover of woody vegetation in upland grasslands and may contribute to woody-plant encroachment that is widespread throughout the southwestern United States and northern Mexico. Temperature explained additional variability of changes in cover of dominant and subdominant plant species. Using a novel empirically based approach we identified "climate pivot points" that were indicative of shifts from increasing to decreasing plant cover over a range of climatic conditions. Reductions in cover of annual and several perennial plant species, in addition to declines in species richness below the long-term summer precipitation mean across plant communities, indicate a decrease in the productivity for all but the most drought-tolerant perennial grasses and shrubs in the Chihuahuan Desert. Overall, our regional synthesis of long-term data provides a robust foundation for forecasting future shifts in the composition and structure of plant assemblages in the largest North American warm desert.


Assuntos
Clima Desértico , Secas , Ecossistema , Temperatura Alta , Plantas/classificação , Animais , Demografia , Estações do Ano , Especificidade da Espécie
16.
Ecology ; 94(2): 435-43, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23691662

RESUMO

In arid ecosystems, current-year precipitation often explains only a small proportion of annual aboveground net primary production (ANPP). We hypothesized that lags in the response of ecosystems to changes in water availability explain this low explanatory power, and that lags result from legacies from transitions from dry to wet years or the reverse. We explored five hypotheses regarding the magnitude of legacies, two possible mechanisms, and the differential effect of previous dry or wet years on the legacy magnitude. We used a three-year manipulative experiment with five levels of rainfall in the first two years (-80% and -50% reduced annual precipitation (PPT), ambient, +50% and +80% increased PPT), and reversed treatments in year 3. Legacies of previous two years, which were dry or wet, accounted for a large fraction (20%) of interannual variability in production on year 3. Legacies in ANPP were similar in absolute value for both types of precipitation transitions, and their magnitude was a function of the difference between previous and current-year precipitation. Tiller density accounted for 40% of legacy variability, while nitrogen and carryover water availability showed no effect. Understanding responses to changes in interannual precipitation will assist in assessing ecosystem responses to climate change-induced increases in precipitation variability.


Assuntos
Clima Desértico , Poaceae , Chuva , Fertilizantes , Nitrogênio , Densidade Demográfica
17.
Nature ; 494(7437): 349-52, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23334410

RESUMO

Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological model for many regions. Large-scale, warm droughts have recently occurred in North America, Africa, Europe, Amazonia and Australia, resulting in major effects on terrestrial ecosystems, carbon balance and food security. Here we compare the functional response of above-ground net primary production to contrasting hydroclimatic periods in the late twentieth century (1975-1998), and drier, warmer conditions in the early twenty-first century (2000-2009) in the Northern and Southern Hemispheres. We find a common ecosystem water-use efficiency (WUE(e): above-ground net primary production/evapotranspiration) across biomes ranging from grassland to forest that indicates an intrinsic system sensitivity to water availability across rainfall regimes, regardless of hydroclimatic conditions. We found higher WUE(e) in drier years that increased significantly with drought to a maximum WUE(e) across all biomes; and a minimum native state in wetter years that was common across hydroclimatic periods. This indicates biome-scale resilience to the interannual variability associated with the early twenty-first century drought--that is, the capacity to tolerate low, annual precipitation and to respond to subsequent periods of favourable water balance. These findings provide a conceptual model of ecosystem properties at the decadal scale applicable to the widespread altered hydroclimatic conditions that are predicted for later this century. Understanding the hydroclimatic threshold that will break down ecosystem resilience and alter maximum WUE(e) may allow us to predict land-surface consequences as large regions become more arid, starting with water-limited, low-productivity grasslands.


Assuntos
Mudança Climática/estatística & dados numéricos , Secas/estatística & dados numéricos , Ecossistema , Plantas/metabolismo , Água/metabolismo , Mudança Climática/história , Secas/história , História do Século XX , História do Século XXI , Poaceae/metabolismo , Chuva , Árvores/metabolismo , Ciclo Hidrológico
18.
Trends Ecol Evol ; 25(10): 592-601, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20728958

RESUMO

Large volumes of data have been collected to document the many ways that ecological systems are responding to changing environmental drivers. A general buy-in on solutions to these problems can be reached only if these and future data are made easily accessible to and understood by a broad audience that includes the public, decision-makers, and other scientists. A developing framework for synthesis is reviewed that integrates three main strategies of ecological research (long-term studies; short-term, process-based studies; and broad-scale observations) with derived data products and additional sources of knowledge. This framework focuses on making data from multiple sources and disciplines easily understood by many, a prerequisite for finding synthetic solutions and predicting future dynamics in a changing world.


Assuntos
Comunicação , Ecologia/métodos , Ecossistema , Projetos de Pesquisa , Fatores de Tempo
19.
Oecologia ; 150(1): 29-39, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16896770

RESUMO

Relationships involving fire and perennial grasses are controversial in Chihuahuan Desert grasslands of southern New Mexico, USA. Research suggests that fire delays the resprouting of perennial grasses well after two growing seasons. However, such results are confounded by livestock grazing, soil erosion, and drought. Additionally, post-fire grass responses may depend on initial clone size. We evaluated the effects of fire, grazing, and clone size on Bouteloua eriopoda (black grama) in southern New Mexico grasslands. Four 2-ha plots were established in each of four sites. Fire and grazing were applied or not applied in 1999 such that four treatment combinations were assigned randomly to plots within each site. Within each plot, small (0-10 cm(2) basal area), medium (10-30 cm(2)), and large ( > 30 cm(2)) clones were initially mapped in five 0.91-m(2) quadrats where grass attributes and litter cover were evaluated before and at the end of two growing seasons following fire. Maximum fire temperature was also measured. At a population level, canopy and litter cover were each approximately 50% less in burned than unburned areas. However, compared to initial levels, canopy height had increased by 10% at the end of the study, regardless of fire. At a clonal level, basal cover reductions were attributed mostly to large clones that survived fire. Smaller clone densities had decreased by as much as 19% in burned compared to unburned areas, and fire reduced the basal cover of medium clones. Basal and canopy cover, recruitment, and clone basal area decreased with increased fire temperatures. Almost all responses were independent of grazing, and interactive effects of grazing and fire were not detected. Fire did not kill all perennial grass clones, regardless of size. However, rapid responses were likely influenced by above-average precipitation after fire. Future studies in desert grasslands should examine how perennial grass dynamics are affected by fire, precipitation patterns, and interactions with grazing.


Assuntos
Ecossistema , Incêndios , Poaceae/crescimento & desenvolvimento , Análise de Variância , Animais , Bovinos/fisiologia , Clima Desértico , Comportamento Alimentar/fisiologia , New Mexico
20.
Proc Natl Acad Sci U S A ; 101(42): 15130-5, 2004 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-15469919

RESUMO

Catastrophic events share characteristic nonlinear behaviors that are often generated by cross-scale interactions and feedbacks among system elements. These events result in surprises that cannot easily be predicted based on information obtained at a single scale. Progress on catastrophic events has focused on one of the following two areas: nonlinear dynamics through time without an explicit consideration of spatial connectivity [Holling, C. S. (1992) Ecol. Monogr. 62, 447-502] or spatial connectivity and the spread of contagious processes without a consideration of cross-scale interactions and feedbacks [Zeng, N., Neeling, J. D., Lau, L. M. & Tucker, C. J. (1999) Science 286, 1537-1540]. These approaches rarely have ventured beyond traditional disciplinary boundaries. We provide an interdisciplinary, conceptual, and general mathematical framework for understanding and forecasting nonlinear dynamics through time and across space. We illustrate the generality and usefulness of our approach by using new data and recasting published data from ecology (wildfires and desertification), epidemiology (infectious diseases), and engineering (structural failures). We show that decisions that minimize the likelihood of catastrophic events must be based on cross-scale interactions, and such decisions will often be counterintuitive. Given the continuing challenges associated with global change, approaches that cross disciplinary boundaries to include interactions and feedbacks at multiple scales are needed to increase our ability to predict catastrophic events and develop strategies for minimizing their occurrence and impacts. Our framework is an important step in developing predictive tools and designing experiments to examine cross-scale interactions.


Assuntos
Desastres , Animais , Doença Catastrófica/epidemiologia , Doenças Transmissíveis/transmissão , Clima Desértico , Planejamento em Desastres/estatística & dados numéricos , Desastres/estatística & dados numéricos , Ecossistema , Engenharia , Incêndios/estatística & dados numéricos , Previsões , Humanos , Insetos Vetores , Dinâmica não Linear , Doenças das Plantas/etiologia , Doenças das Plantas/estatística & dados numéricos , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...