Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 812: 151443, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742983

RESUMO

COVID-19 has led to global population lockdowns that have had indirect effects on terrestrial and marine fauna, yet little is known on their effects on marine planktonic communities. We analysed the effect of the spring 2020 lockdown in a marine coastal area in Blanes Bay, NW Mediterranean. We compared a set of 23 oceanographic, microbial and biogeochemical variables sampled right after the strict lockdown in Spain, with data from the previous 15 years after correcting for long-term trends. Our analysis shows a series of changes in the microbial communities which may have been induced by the combination of the decreased nitrogen atmospheric load, the lower wastewater flux and the reduced fishing activity in the area, among other factors. In particular, we detected a slight decrease beyond the long-term trend in chlorophyll a, in the abundance of several microbial groups (phototrophic nanoflagellates and total prokaryotes) and in prokaryotic activity (heterotrophic prokaryotic production and ß-glucosidase activity) which, as a whole, resulted in a moderate increase of oligotrophy in Blanes Bay after the lockdown.


Assuntos
COVID-19 , Água do Mar , Clorofila A , Controle de Doenças Transmissíveis , Ecossistema , Humanos , SARS-CoV-2
2.
Sci Total Environ ; 746: 141190, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32795760

RESUMO

Coastal marine ecosystems are strongly influenced by different occasional events, such as intense winds, mixing, rain and river discharges. These events can directly or indirectly cause changes in dissolved organic matter (DOM) quality through a cascade of different biotic and abiotic processes. Changes in DOM quality are often associated with changes in DOM optical properties. Thus, examining the dynamics of chromophoric DOM (CDOM) can provide valuable information about biological and physical processes that have occurred in the ecosystem. Episodic meteorological events, particularly in temperate areas, appear very abruptly and induce very rapid responses; therefore, high time-resolved measurements are needed to capture them. We used a weekly sampling scheme to characterize DOM and nutrient dynamics in the NW Mediterranean coastal station 'SOLA'. From February 2013 to April 2014, we measured several physical and chemical variables including temperature, salinity, inorganic nutrients, chlorophyll a dissolved organic carbon (DOC), CDOM and fluorescent DOM (FDOM). During this period, two extremely high fresh water intrusions greatly influenced the dynamics of some DOM fractions, in particular the FDOM. Inorganic nutrients and chlorophyll a showed seasonal patterns: A winter period characterized by a high nutrient concentration in surface waters favored the phytoplankton spring bloom; then, summer stratification extended until autumn. This stratification led to nutrient depletion and, consequently, lower chlorophyll a values in the photic zone. The CDOM and FDOM optical active fractions did not follow temporal trends similar to total DOC. This was likely because the potential sources and sinks of these DOM pools are microbial activity and light exposure, and these were acting simultaneously but in opposite directions. Interestingly, DOC exhibited the highest concentrations in summer, coinciding with nutrient and chlorophyll a minima. To explain this mismatch, we propose a sequence of abiotic and biotic phenomena that drive DOC temporal dynamics.


Assuntos
Carbono/análise , Clorofila A , Ecossistema , Mar Mediterrâneo , Rios
3.
Artigo em Inglês | MEDLINE | ID: mdl-32674437

RESUMO

Involving and engaging stakeholders is crucial for studying and managing the complex interactions between marine ecosystems and human health and wellbeing. The Oceans and Human Health Chair was founded in the town of Roses (Catalonia, Spain, NW Mediterranean) in 2018, the fruit of a regional partnership between various stakeholders, and for the purpose of leading the way to better health and wellbeing through ocean research and conservation. The Chair is located in an area of the Mediterranean with a notable fishing, tourist, and seafaring tradition and is close to a marine reserve, providing the opportunity to observe diverse environmental conditions and coastal and maritime activities. The Chair is a case study demonstrating that local, collaborative, transdisciplinary, trans-sector, and bottom-up approaches offer tremendous opportunities for engaging coastal communities to help support long-lasting solutions that benefit everyone, and especially those living by the sea or making their living from the goods and services provided by the sea. Furthermore, the Chair has successfully integrated most of its experts in oceans and human health from the most prestigious institutions in Catalonia. The Chair focuses on three main topics identified by local stakeholders: Fish and Health; Leisure, Health, and Wellbeing; and Medicines from the Sea. Led by stakeholder engagement, the Chair can serve as a novel approach within the oceans and human health field of study to tackle a variety of environmental and public health challenges related to both communicable and non-communicable diseases, within the context of sociocultural issues. Drawing on the example provided by the Chair, four principles are established to encourage improved participatory processes in the oceans and human health field: bottom-up, "think local", transdisciplinary and trans-sectorial, and "balance the many voices".


Assuntos
Ecossistema , Oceanos e Mares , Participação dos Interessados , Animais , Saúde Ambiental , Humanos , Biologia Marinha , Espanha
4.
Sensors (Basel) ; 20(9)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384795

RESUMO

Since 2014, the global land and sea surface temperature has scaled 0.23 °C above the decadal average (2009-2018). Reports indicate that Mediterranean Sea temperatures have been rising at faster rates than in the global ocean. Oceanographic time series of physical and biogeochemical data collected from an onboard and a multisensor mooring array in the northwestern Mediterranean Sea (Blanes submarine canyon, Balearic Sea) during 2009-2018 revealed an abrupt temperature rising since 2014, in line with regional and global warming. Since 2014, the oligotrophic conditions of the water column have intensified, with temperature increasing 0.61 °C on the surface and 0.47 °C in the whole water column in continental shelf waters. Water transparency has increased due to a decrease in turbidity anomaly of -0.1 FTU. Since 2013, inshore chlorophyll a concentration remained below the average (-0.15 mg·l-1) and silicates showed a declining trend. The mixed layer depth showed deepening in winter and remained steady in summer. The net surface heat fluxes did not show any trend linked to the local warming, probably due to the influence of incoming offshore waters produced by the interaction between the Northern Current and the submarine canyon. Present regional and global water heating pattern is increasing the stress of highly diverse coastal ecosystems at unprecedented levels, as reported by the literature. The strengthening of the oligotrophic conditions in the study area may also apply as a cautionary warning to similar coastal ecosystems around the world following the global warming trend.

5.
Front Microbiol ; 10: 858, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068921

RESUMO

Atmospheric deposition is a source of inorganic nutrients and organic matter to the ocean, and can favor the growth of some planktonic species over others according to their nutrient requirements. Atmospheric inputs from natural and anthropogenic sources are nowadays increasing due to desertification and industrialization, respectively. While the impact of mineral dust (mainly from the Saharan desert) on phytoplankton and bacterial community composition has been previously assessed, the effect of anthropogenic aerosols on marine bacterial assemblages remains poorly studied. Since marine bacteria play a range of roles in the biogeochemical cycles of inorganic nutrients and organic carbon, it is important to determine which taxa of marine bacteria may benefit from aerosol fertilization and which not. Here, we experimentally assessed the effect of Saharan dust and anthropogenic aerosols on marine bacterioplankton community composition across a spatial and temporal range of trophic conditions in the northwestern Mediterranean Sea. Results from 16S rDNA sequencing showed that bacterial diversity varied significantly with seasonality and geographical location. While atmospheric deposition did not yield significant changes in community composition when all the experiments where considered together, it did produce changes at certain places and during certain times of the year. These effects accounted for shifts in the bacterial community's relative abundance of up to 28%. The effect of aerosols was overall greatest in summer, both types of atmospheric particles stimulating the groups Alphaproteobacteria, Betaproteobacteria, and Cyanobacteria in the location with the highest anthropogenic footprint. Other bacterial groups benefited from one or the other aerosol depending on the season and location. Anthropogenic aerosols increased the relative abundance of groups belonging to the phylum Bacteriodetes (Cytophagia, Flavobacteriia, and Sphingobacteriia), while Saharan dust stimulated most the phytoplanktonic group of Cyanobacteria and, more specifically, Synechococcus.

6.
Front Microbiol ; 8: 2215, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29187835

RESUMO

In oligotrophic regions, such as the Mediterranean Sea, atmospheric deposition has the potential to stimulate heterotrophic prokaryote growth and production in surface waters, especially during the summer stratification period. Previous studies focused on the role of leaching nutrients from mineral particles of Saharan (S) origin, and were restricted to single locations at given times of the year. In this study, we evaluate the effect of atmospheric particles from diverse sources and with a markedly different chemical composition [S dust and anthropogenic (A) aerosols] on marine planktonic communities from three locations of the northwestern Mediterranean with contrasted anthropogenic footprint. Experiments were also carried out at different times of the year, considering diverse initial conditions. We followed the dynamics of the heterotrophic community and a range of biogeochemical and physiological parameters in six experiments. While the effect of aerosols on bacterial abundance was overall low, bacterial heterotrophic production was up to 3.3 and 2.1 times higher in the samples amended with A and S aerosols, respectively, than in the controls. Extracellular enzymatic activities [leu-aminopeptidase (AMA) and ß-glucosidase (ß-Gl)] were also enhanced with aerosols, especially from A origin. AMA and ß-Gl increased up to 7.1 in the samples amended with A aerosols, and up to 1.7 and 2.1 times, respectively, with S dust. The larger stimulation observed with A aerosols might be attributed to their higher content in nitrate. However, the response was variable depending the initial status of the seawater. In addition, we found that both A and S aerosols stimulated bacterial abundance and metabolism significantly more in the absence of competitors and predators.

7.
Rev Sci Instrum ; 87(3): 035119, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27036831

RESUMO

In recent years, there has been a renewed interest in the impact of turbulence on aquatic organisms. In response to this interest, a novel instrument has been constructed, TURBOGEN, that generates turbulence in water volumes up to 13 l. TURBOGEN is fully computer controlled, thus, allowing for a high level of reproducibility and for variations of the intensity and characteristics of turbulence during the experiment. The calibration tests, carried out by particle image velocimetry, showed TURBOGEN to be successful in generating isotropic turbulence at the typical relatively low levels of the marine environment. TURBOGEN and its sizing have been devised with the long-term scope of analyzing in detail the molecular responses of plankton to different mixing regimes, which is of great importance in both environmental and biotechnological processes.


Assuntos
Computadores , Hidrodinâmica , Plâncton , Calibragem , Desenho de Equipamento , Cinética , Água
8.
Front Microbiol ; 7: 2159, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28197126

RESUMO

Transparent Exopolymer Particles (TEP) are relevant in particle and carbon fluxes in the ocean, and have economic impact in the desalination industry affecting reverse osmosis membrane fouling. However, general models of their occurrence and dynamics are not yet possible because of the poorly known co-variations with other physical and biological variables. Here, we describe TEP distributions in the NW Mediterranean Sea during late spring 2012, along perpendicular and parallel transects to the Catalan coast. The stations in the parallel transect were sampled at the surface, while the stations in the perpendicular transect were sampled from the surface to the bathypelagic, including the bottom nepheloid layers. We also followed the short-term TEP dynamics along a 2-day cycle in offshore waters. TEP concentrations in the area ranged from 4.9 to 122.8 and averaged 31.4 ± 12.0 µg XG eq L-1. The distribution of TEP measured in transects parallel to the Catalan Coast correlated those of chlorophyll a (Chla) in May but not in June, when higher TEP-values with respect to Chla were observed. TEP horizontal variability in epipelagic waters from the coast to the open sea also correlated to that of Chla, O2 (that we interpret as a proxy of primary production) and bacterial production (BP). In contrast, the TEP vertical distributions in epipelagic waters were uncoupled from those of Chla, as TEP maxima were located above the deep chlorophyll maxima. The vertical distribution of TEP in the epipelagic zone was correlated with O2 and BP, suggesting combined phytoplankton (through primary production) and bacterial (through carbon reprocessing) TEP sources. However, no clear temporal patterns arose during the 2-day cycle. In meso- and bathypelagic waters, where phytoplanktonic sources are minor, TEP concentrations (10.1 ± 4.3 µg XG eq l-1) were half those in the epipelagic, but we observed relative TEP increments coinciding with the presence of nepheloid layers. These TEP increases were not paralleled by increases in particulate organic carbon, indicating that TEP are likely to act as aggregating agents of the mostly inorganic particles present in these bottom nepheloid layers.

9.
PLoS One ; 9(10): e110762, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25333783

RESUMO

The surface waters of the Mediterranean Sea are extremely poor in the nutrients necessary for plankton growth. At the same time, the Mediterranean Sea borders with the largest and most active desert areas in the world and the atmosphere over the basin is subject to frequent injections of mineral dust particles. We describe statistical correlations between dust deposition over the Mediterranean Sea and surface chlorophyll concentrations at ecological time scales. Aerosol deposition of Saharan origin may explain 1 to 10% (average 5%) of seasonally detrended chlorophyll variability in the low nutrient-low chlorophyll Mediterranean. Most of the statistically significant correlations are positive with main effects in spring over the Eastern and Central Mediterranean, conforming to a view of dust events fueling needed nutrients to the planktonic community. Some areas show negative effects of dust deposition on chlorophyll, coinciding with regions under a large influence of aerosols from European origin. The influence of dust deposition on chlorophyll dynamics may become larger in future scenarios of increased aridity and shallowing of the mixed layer.


Assuntos
Clorofila/metabolismo , Poeira , Biologia Marinha , Fitoplâncton/crescimento & desenvolvimento , África do Norte , Clima Desértico , Mar Mediterrâneo
10.
Nat Rev Microbiol ; 6(5): 407; author reply 407, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18392034
11.
Water Res ; 39(13): 2994-3000, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15996708

RESUMO

The aggregation and breakup of particle flocs were investigated by monitoring the size distribution of a suspension of aggregates, with diameter d(o), under shear flow created by two mixing systems. The aggregation behavior was studied in 63 experiments under various conditions of induced shear rate and particle volume concentration for particle aggregates smaller than the Kolmogorov scale. Despite small shear rates being characteristics of natural systems, only experiments with comparatively high shear rates have been conducted to date. Because of this reason, in this study, the shear rates were chosen to mimic those found in natural systems. In the first set of experiments the aggregate size, d, was analyzed by changing the mean shear, G (ranging from 0.70 to 27.36 s(-1)) created in a tank with a grid oscillating through the whole suspension volume. In the second set of experiments, a spherical flask was placed in an orbital shaking table where G ranged from 0.45 to 2.40s(-1). In all the cases there was an increase of d at increasing G . The dependence on d was found to be identical for the particle volume concentrations investigated, phi=0.2,0.8,2,4,6,8 and 10 x 10(-5), with the stable aggregate size shifting towards aggregate growth as particle volume concentration increased. These results demonstrate that shear provided a means to keep the particle number count high for collisions to occur but it is small enough that the aggregation-breakup balance is dominated by aggregation.


Assuntos
Floculação , Água/química , Microesferas , Tamanho da Partícula , Reologia , Resistência ao Cisalhamento , Movimentos da Água
12.
Proc Natl Acad Sci U S A ; 101(51): 17720-4, 2004 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-15601780

RESUMO

It is a well known fact that stirring keeps particles suspended in fluids. This is apparent, for instance, when shaking medicine flasks, when agitating tea deposits in a mug, or when heavy winds fill the air with dust particles. The commonplace nature of such observations makes it easy to accept that this feature will apply to any natural phenomenon as long as the flow is turbulent enough. This has been the case for phytoplankton in the surface mixed layers of lakes and oceans. The traditional view assumes that an increase in turbulence bears ecological advantages for nonmotile groups like diatoms that, otherwise, would settle in deep and unlit waters. However, this assumption has no theoretical ground, and the experimental results we present here point in the opposite direction. Phytoplankton settling velocity increases when turbulence intensifies from the low to the higher values recorded in the upper mixed layers of lakes and oceans. Consequently, turbulence does not favor phytoplankton remaining in lit waters but is rather an environmental stress that can only be avoided through morphological and/or physiological adaptations.


Assuntos
Fitoplâncton/citologia , Fitoplâncton/fisiologia , Movimentos da Água , Acústica , Animais , Cinética , Tamanho da Partícula
13.
Appl Environ Microbiol ; 70(11): 6753-66, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15528542

RESUMO

The results of empirical studies have revealed links between phytoplankton and bacterioplankton, such as the frequent correlation between chlorophyll a and bulk bacterial abundance and production. Nevertheless, little is known about possible links at the level of specific taxonomic groups. To investigate this issue, seawater microcosm experiments were performed in the northwestern Mediterranean Sea. Turbulence was used as a noninvasive means to induce phytoplankton blooms dominated by different algae. Microcosms exposed to turbulence became dominated by diatoms, while small phytoflagellates gained importance under still conditions. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments showed that changes in phytoplankton community composition were followed by shifts in bacterioplankton community composition, both as changes in the presence or absence of distinct bacterial phylotypes and as differences in the relative abundance of ubiquitous phylotypes. Sequencing of DGGE bands showed that four Roseobacter phylotypes were present in all microcosms. The microcosms with a higher proportion of phytoflagellates were characterized by four phylotypes of the Bacteroidetes phylum: two affiliated with the family Cryomorphaceae and two with the family Flavobacteriaceae. Two other Flavobacteriaceae phylotypes were characteristic of the diatom-dominated microcosms, together with one Alphaproteobacteria phylotype (Roseobacter) and one Gammaproteobacteria phylotype (Methylophaga). Phylogenetic analyses of published Bacteroidetes 16S rRNA gene sequences confirmed that members of the Flavobacteriaceae are remarkably responsive to phytoplankton blooms, indicating these bacteria could be particularly important in the processing of organic matter during such events. Our data suggest that quantitative and qualitative differences in phytoplankton species composition may lead to pronounced differences in bacterioplankton species composition.


Assuntos
Bactérias/classificação , Ecossistema , Eutrofização/fisiologia , Fitoplâncton/classificação , Plâncton/classificação , Água do Mar/microbiologia , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/crescimento & desenvolvimento , Diatomáceas/crescimento & desenvolvimento , Dinoflagellida/crescimento & desenvolvimento , Eletroforese/métodos , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/crescimento & desenvolvimento , Dados de Sequência Molecular , Filogenia , Fitoplâncton/genética , Fitoplâncton/crescimento & desenvolvimento , Plâncton/genética , Plâncton/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Roseobacter/classificação , Roseobacter/genética , Roseobacter/crescimento & desenvolvimento , Análise de Sequência de DNA
14.
Proc Natl Acad Sci U S A ; 100(22): 12771-5, 2003 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-14566048

RESUMO

The searching trajectories of different animals can be described with a broad class of flight length (lj) distributions with P(lj) = lj-mu. Theoretical studies have shown that changes in these distributions (i.e., different mu values) are key to optimizing the long-term encounter statistics under certain searcher-resource scenarios. In particular, they predict the advantage of Lévy searching (mu approximately 2) over Brownian motion (mu > or = 3) for low-prey-density scenarios. Here, we present experimental evidence of predicted optimal changes in the flight-time distribution of a predator's walk in response to gradual density changes of its moving prey. Flight times of the dinoflagellate Oxyrrhis marina switched from an exponential to an inverse square power-law distribution when the prey (Rhodomonas sp.) decreased in abundance. Concomitantly, amplitude and frequency of the short-term helical path increased. The specific biological mechanisms involved in these searching behavioral changes are discussed. We suggest that, in a three-dimensional environment, a stronger helical component combined with a Lévy walk searching strategy enhances predator's encounter rates. Our results support the idea of universality of the statistical laws in optimal searching processes despite variations in the biological details of the organisms.


Assuntos
Dinoflagellida/fisiologia , Zooplâncton/fisiologia , Animais , Modelos Biológicos , Movimento , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...