Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622998

RESUMO

Neonatal meningitis is a devastating disease associated with high mortality and neurological sequelae. Escherichia coli is the second most common cause of neonatal meningitis in full-term infants (herein NMEC) and the most common cause of meningitis in preterm neonates. Here, we investigated the genomic relatedness of a collection of 58 NMEC isolates spanning 1974-2020 and isolated from seven different geographic regions. We show NMEC are comprised of diverse sequence types (STs), with ST95 (34.5%) and ST1193 (15.5%) the most common. No single virulence gene profile was conserved in all isolates; however, genes encoding fimbrial adhesins, iron acquisition systems, the K1 capsule, and O antigen types O18, O75, and O2 were most prevalent. Antibiotic resistance genes occurred infrequently in our collection. We also monitored the infection dynamics in three patients that suffered recrudescent invasive infection caused by the original infecting isolate despite appropriate antibiotic treatment based on antibiogram profile and resistance genotype. These patients exhibited severe gut dysbiosis. In one patient, the causative NMEC isolate was also detected in the fecal flora at the time of the second infection episode and after treatment. Thus, although antibiotics are the standard of care for NMEC treatment, our data suggest that failure to eliminate the causative NMEC that resides intestinally can lead to the existence of a refractory reservoir that may seed recrudescent infection.


Assuntos
Infecções por Escherichia coli , Meningite , Recém-Nascido , Humanos , Escherichia coli/genética , Virulência/genética , Células Clonais
2.
mBio ; 15(3): e0338823, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38353545

RESUMO

Urinary tract infections (UTIs) are one of the most common bacterial infections in humans, with ~400 million cases across the globe each year. Uropathogenic Escherichia coli (UPEC) is the major cause of UTI and increasingly associated with antibiotic resistance. This scenario has been worsened by the emergence and spread of pandemic UPEC sequence type 131 (ST131), a multidrug-resistant clone associated with extraordinarily high rates of infection. Here, we employed transposon-directed insertion site sequencing in combination with metabolomic profiling to identify genes and biochemical pathways required for growth and survival of the UPEC ST131 reference strain EC958 in human urine (HU). We identified 24 genes required for growth in HU, which mapped to diverse pathways involving small peptide, amino acid and nucleotide metabolism, the stringent response pathway, and lipopolysaccharide biosynthesis. We also discovered a role for UPEC resistance to fluoride during growth in HU, most likely associated with fluoridation of drinking water. Complementary nuclear magnetic resonance (NMR)-based metabolomics identified changes in a range of HU metabolites following UPEC growth, the most pronounced being L-lactate, which was utilized as a carbon source via the L-lactate dehydrogenase LldD. Using a mouse UTI model with mixed competitive infection experiments, we demonstrated a role for nucleotide metabolism and the stringent response in UPEC colonization of the mouse bladder. Together, our application of two omics technologies combined with different infection-relevant settings has uncovered new factors required for UPEC growth in HU, thus enhancing our understanding of this pivotal step in the UPEC infection pathway. IMPORTANCE: Uropathogenic Escherichia coli (UPEC) cause ~80% of all urinary tract infections (UTIs), with increasing rates of antibiotic resistance presenting an urgent threat to effective treatment. To cause infection, UPEC must grow efficiently in human urine (HU), necessitating a need to understand mechanisms that promote its adaptation and survival in this nutrient-limited environment. Here, we used a combination of functional genomic and metabolomic techniques and identified roles for the metabolism of small peptides, amino acids, nucleotides, and L-lactate, as well as the stringent response pathway, lipopolysaccharide biosynthesis, and fluoride resistance, for UPEC growth in HU. We further demonstrated that pathways involving nucleotide metabolism and the stringent response are required for UPEC colonization of the mouse bladder. The UPEC genes and metabolic pathways identified in this study represent targets for the development of innovative therapeutics to prevent UPEC growth during human UTI, an urgent need given the rapidly rising rates of global antibiotic resistance.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Escherichia coli/genética , Fluoretos/metabolismo , Lipopolissacarídeos/metabolismo , Infecções Urinárias/microbiologia , Infecções por Escherichia coli/microbiologia , Genômica , Nucleotídeos/metabolismo , Lactatos/metabolismo , Escherichia coli Uropatogênica/genética
3.
Nat Commun ; 15(1): 1441, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383596

RESUMO

Bacteria adapt to selective pressure in their immediate environment in multiple ways. One mechanism involves the acquisition of independent mutations that disable or modify a key pathway, providing a signature of adaptation via convergent evolution. Extra-intestinal pathogenic Escherichia coli (ExPEC) belonging to sequence type 95 (ST95) represent a global clone frequently associated with severe human infections including acute pyelonephritis, sepsis, and neonatal meningitis. Here, we analysed a publicly available dataset of 613 ST95 genomes and identified a series of loss-of-function mutations that disrupt cellulose production or its modification in 55.3% of strains. We show the inability to produce cellulose significantly enhances ST95 invasive infection in a rat model of neonatal meningitis, leading to the disruption of intestinal barrier integrity in newborn pups and enhanced dissemination to the liver, spleen and brain. Consistent with these observations, disruption of cellulose production in ST95 augmented innate immune signalling and tissue neutrophil infiltration in a mouse model of urinary tract infection. Mutations that disrupt cellulose production were also identified in other virulent ExPEC STs, Shigella and Salmonella, suggesting a correlative association with many Enterobacteriaceae that cause severe human infection. Together, our findings provide an explanation for the emergence of hypervirulent Enterobacteriaceae clones.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Meningite , Camundongos , Animais , Ratos , Humanos , Virulência/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fatores de Virulência/genética , Filogenia
4.
Nat Commun ; 14(1): 1530, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934086

RESUMO

Even in the setting of optimal resuscitation in high-income countries severe sepsis and septic shock have a mortality of 20-40%, with antibiotic resistance dramatically increasing this mortality risk. To develop a reference dataset enabling the identification of common bacterial targets for therapeutic intervention, we applied a standardized genomic, transcriptomic, proteomic and metabolomic technological framework to multiple clinical isolates of four sepsis-causing pathogens: Escherichia coli, Klebsiella pneumoniae species complex, Staphylococcus aureus and Streptococcus pyogenes. Exposure to human serum generated a sepsis molecular signature containing global increases in fatty acid and lipid biosynthesis and metabolism, consistent with cell envelope remodelling and nutrient adaptation for osmoprotection. In addition, acquisition of cholesterol was identified across the bacterial species. This detailed reference dataset has been established as an open resource to support discovery and translational research.


Assuntos
Sepse , Infecções Estafilocócicas , Humanos , Antibacterianos/uso terapêutico , Proteômica , Sepse/microbiologia , Bactérias , Escherichia coli , Klebsiella , Testes de Sensibilidade Microbiana
5.
Front Neural Circuits ; 16: 939235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389180

RESUMO

The prefrontal cortex plays a central role in the control of complex cognitive processes including action control and decision making. It also shows a specific pattern of delayed maturation related to unique behavioral changes during adolescence and allows the development of adult cognitive processes. The adolescent brain is extremely plastic and critically vulnerable to external insults. Related to this vulnerability, adolescence is also associated with the emergence of numerous neuropsychiatric disorders involving alterations of prefrontal functions. Within prefrontal microcircuits, the dopamine and the endocannabinoid systems have widespread effects on adolescent-specific ontogenetic processes. In this review, we highlight recent advances in our understanding of the maturation of the dopamine system and the endocannabinoid system in the prefrontal cortex during adolescence. We discuss how they interact with GABA and glutamate neurons to modulate prefrontal circuits and how they can be altered by different environmental events leading to long-term neurobiological and behavioral changes at adulthood. Finally, we aim to identify several future research directions to help highlight gaps in our current knowledge on the maturation of these microcircuits.


Assuntos
Dopamina , Endocanabinoides , Adolescente , Humanos , Adulto , Dopamina/fisiologia , Córtex Pré-Frontal/fisiologia , Período Crítico Psicológico , Encéfalo
6.
PLoS Pathog ; 18(6): e1010582, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35700218

RESUMO

Extra-intestinal pathogenic Escherichia coli (ExPEC) belong to a critical priority group of antibiotic resistant pathogens. ExPEC establish gut reservoirs that seed infection of the urinary tract and bloodstream, but the mechanisms of gut colonisation remain to be properly understood. Ucl fimbriae are attachment organelles that facilitate ExPEC adherence. Here, we investigated cellular receptors for Ucl fimbriae and Ucl expression to define molecular mechanisms of Ucl-mediated ExPEC colonisation of the gut. We demonstrate differential expression of Ucl fimbriae in ExPEC sequence types associated with disseminated infection. Genome editing of strains from two common sequence types, F11 (ST127) and UTI89 (ST95), identified a single nucleotide polymorphism in the ucl promoter that changes fimbriae expression via activation by the global stress-response regulator OxyR, leading to altered gut colonisation. Structure-function analysis of the Ucl fimbriae tip-adhesin (UclD) identified high-affinity glycan receptor targets, with highest affinity for sialyllacto-N-fucopentose VI, a structure likely to be expressed on the gut epithelium. Comparison of the UclD adhesin to the homologous UcaD tip-adhesin from Proteus mirabilis revealed that although they possess a similar tertiary structure, apart from lacto-N-fucopentose VI that bound to both adhesins at low-micromolar affinity, they recognize different fucose- and glucose-containing oligosaccharides. Competitive surface plasmon resonance analysis together with co-structural investigation of UcaD in complex with monosaccharides revealed a broad-specificity glycan binding pocket shared between UcaD and UclD that could accommodate these interactions. Overall, our study describes a mechanism of adaptation that augments establishment of an ExPEC gut reservoir to seed disseminated infections, providing a pathway for the development of targeted anti-adhesion therapeutics.


Assuntos
Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Adesinas Bacterianas/metabolismo , Adesinas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Infecções por Escherichia coli/metabolismo , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Humanos , Enteropatias , Polissacarídeos/metabolismo
7.
NPJ Biofilms Microbiomes ; 8(1): 20, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396507

RESUMO

The formation of aggregates and biofilms enhances bacterial colonisation and infection progression by affording protection from antibiotics and host immune factors. Despite these advantages there is a trade-off, whereby bacterial dissemination is reduced. As such, biofilm development needs to be controlled to suit adaptation to different environments. Here we investigate members from one of largest groups of bacterial adhesins, the autotransporters, for their critical role in the assembly of bacterial aggregates and biofilms. We describe the structural and functional characterisation of autotransporter Ag43 variants from different Escherichia coli pathotypes. We show that specific interactions between amino acids on the contacting interfaces of adjacent Ag43 proteins drives a common mode of trans-association that leads to cell clumping. Furthermore, subtle variation of these interactions alters aggregation kinetics and the degree of compacting within cell clusters. Together, our structure-function investigation reveals an underlying molecular basis for variations in the density of bacterial communities.


Assuntos
Adesinas de Escherichia coli , Proteínas de Escherichia coli , Adesinas de Escherichia coli/química , Aderência Bacteriana , Biofilmes , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
8.
mBio ; 13(1): e0351921, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35038925

RESUMO

Many antibiotic resistant uropathogenic Escherichia coli (UPEC) strains belong to clones defined by their multilocus sequence type (ST), with ST131 being the most dominant. Although we have a good understanding of resistance development to fluoroquinolones and third-generation cephalosporins by ST131, our understanding of the virulence repertoire that has contributed to its global dissemination is limited. Here we show that the genes encoding Afa/Dr fimbriae, a group of adhesins strongly associated with UPEC that cause gestational pyelonephritis and recurrent cystitis, are found in approximately one third of all ST131 strains. Sequence comparison of the AfaE adhesin protein revealed a unique allelic variant carried by 82.9% of afa-positive ST131 strains. We identify the afa regulatory region as a hotspot for the integration of insertion sequence (IS) elements, all but one of which alter afa transcription. Close investigation demonstrated that the integration of an IS1 element in the afa regulatory region leads to increased expression of Afa/Dr fimbriae, promoting enhanced adhesion to kidney epithelial cells and suggesting a mechanism for altered virulence. Finally, we provide evidence for a more widespread impact of IS1 on ST131 genome evolution, suggesting that IS dynamics contribute to strain level microevolution that impacts ST131 fitness. IMPORTANCE E. coli ST131 is the most common antibiotic resistant UPEC clone associated with human urinary tract and bloodstream infections. Understanding the features of ST131 that have driven its global dissemination remains a critical priority if we are to counter its increasing antibiotic resistance. Here, we utilized a large collection of ST131 isolates to investigate the prevalence, regulation, and function of Afa/Dr fimbriae, a well-characterized UPEC colonization and virulence factor. We show that the afa genes are found frequently in ST131 and demonstrate how the integration of IS elements in the afa regulatory region modulates Afa expression, presenting an example of altered virulence capacity. We also exploit a curated set of ST131 genomes to map the integration of the antibiotic resistance-associated IS1 element in the ST131 pangenome, providing evidence for its widespread impact on ST131 genome evolution.


Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Adesinas Bacterianas/metabolismo , Antibacterianos/metabolismo , Células Clonais , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/genética , Infecções Urinárias/genética , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/patogenicidade , Virulência/genética
9.
Antimicrob Agents Chemother ; 66(1): e0214621, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34780264

RESUMO

Escherichia coli ST131 is a recently emerged antibiotic resistant clone responsible for high rates of urinary tract and bloodstream infections. Despite its global dominance, the precise mechanisms that have driven the rapid dissemination of ST131 remain unknown. Here, we show that the plasmid-associated resistance gene encoding the AAC(6')-Ib-cr enzyme that inactivates the fluoroquinolone (FQ) antibiotic ciprofloxacin is present in >70% of strains from the most rapidly expanding subgroup of multidrug resistant ST131. Using a series of genome-edited and plasmid-cured isogenic strains, we demonstrate that the aac(6')-Ib-cr gene confers a selective advantage on ST131 in the presence of ciprofloxacin, even in strains containing chromosomal GyrA and ParC FQ-resistance mutations. Further, we identify a pattern of emerging carbapenem resistance in other common E. coli clones carrying both aac(6')-Ib-cr and chromosomal FQ-resistance mutations, suggesting this dual resistance combination may also impart a selective advantage on these non-ST131 antibiotic resistant lineages.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética
10.
J Neurosci Res ; 99(7): 1885-1901, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33848365

RESUMO

Dopamine signaling in nucleus accumbens (NAc) is modulated by γ-aminobutyric acid (GABA), acting through GABA-A and GABA-B receptors: dysregulation of GABAergic control of dopamine function may be important in behavioral deficits in schizophrenia. We investigated the effect of GABA-A (muscimol) and GABA-B (baclofen) receptor agonists on electrically stimulated dopamine release. Furthermore, we explored whether drug-induced changes were disrupted by pretreatment with phencyclidine, which provides a well-validated model of schizophrenia. Using brain slices from female rats, fast-scan cyclic voltammetry was used to measure electrically stimulated dopamine release in NAc shell. Both muscimol and baclofen caused concentration-dependent attenuation of evoked dopamine release: neither effect was changed by dihydro-ß-erythroidine, a nicotinic acetylcholine receptor antagonist, or the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), precluding indirect mechanisms using these transmitter systems in the GABAergic actions. In slices taken from rats pretreated with phencyclidine, the attenuation of evoked dopamine release by baclofen was abolished, but the attenuation by muscimol was unaffected. Since phencyclidine pretreatment was followed by drug-free washout period of at least a week, the drug was not present during recording. Therefore, disruption of GABA-B modulation of dopamine is due to long-term functional changes resulting from the treatment, rather than transient changes due to the drug's presence at test. This enduring dysregulation of GABA-B modulation of accumbal dopamine release provides a plausible mechanism through which GABA dysfunction influences accumbal dopamine leading to behavioral changes seen in schizophrenia and may provide a route for novel therapeutic strategies to treat the condition.


Assuntos
Dopamina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Esquizofrenia/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Agonistas GABAérgicos/farmacologia , Fenciclidina/farmacologia , Ratos , Ratos Wistar
11.
J Neurosci ; 41(23): 5080-5092, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33926995

RESUMO

Control of protein intake is essential for numerous biological processes as several amino acids cannot be synthesized de novo, however, its neurobiological substrates are still poorly understood. In the present study, we combined in vivo fiber photometry with nutrient-conditioned flavor in a rat model of protein appetite to record neuronal activity in the VTA, a central brain region for the control of food-related processes. In adult male rats, protein restriction increased preference for casein (protein) over maltodextrin (carbohydrate). Moreover, protein consumption was associated with a greater VTA response, relative to carbohydrate. After initial nutrient preference, a switch from a normal balanced diet to protein restriction induced rapid development of protein preference but required extensive exposure to macronutrient solutions to induce elevated VTA responses to casein. Furthermore, prior protein restriction induced long-lasting food preference and VTA responses. This study reveals that VTA circuits are involved in protein appetite in times of need, a crucial process for animals to acquire an adequate amount of protein in their diet.SIGNIFICANCE STATEMENT Acquiring insufficient protein in one's diet has severe consequences for health and ultimately will lead to death. In addition, a low level of dietary protein has been proposed as a driver of obesity as it can leverage up intake of fat and carbohydrate. However, much remains unknown about the role of the brain in ensuring adequate intake of protein. Here, we show that in a state of protein restriction a key node in brain reward circuitry, the VTA, is activated more strongly during consumption of protein than carbohydrate. Moreover, although rats' behavior changed to reflect new protein status, patterns of neural activity were more persistent and only loosely linked to protein status.


Assuntos
Apetite/fisiologia , Comportamento Apetitivo/fisiologia , Proteínas Alimentares , Nutrientes , Área Tegmentar Ventral/fisiologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley
12.
Trends Neurosci ; 44(6): 464-477, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33674134

RESUMO

Dopamine (DA), serotonin (5-hydroxytryptamine, 5-HT), and endocannabinoids (ECs) are key neuromodulators involved in many aspects of motivated behavior, including reward processing, reinforcement learning, and behavioral flexibility. Among the longstanding views about possible relationships between these neuromodulators is the idea of DA and 5-HT acting as opponents. This view has been challenged by emerging evidence that 5-HT supports reward seeking via activation of DA neurons in the ventral tegmental area. Adding an extra layer of complexity to these interactions, the endocannabinoid system is uniquely placed to influence dopaminergic and serotonergic neurotransmission. In this review we discuss how these three neuromodulatory systems interact at the cellular and circuit levels. Technological advances that facilitate precise identification and control of genetically targeted neuronal populations will help to achieve a better understanding of the complex relationship between these essential systems, and the potential relevance for motivated behavior.


Assuntos
Endocanabinoides , Serotonina , Dopamina , Neurônios Dopaminérgicos , Humanos , Neurotransmissores , Recompensa , Área Tegmentar Ventral
13.
Eur J Neurosci ; 53(6): 1809-1821, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33426718

RESUMO

Disruptions in attention, salience and increased distractibility are implicated in multiple psychiatric conditions. The ventral tegmental area (VTA) is a potential site for converging information about external stimuli and internal states to be integrated and guide adaptive behaviours. Given the dual role of dopamine signals in both driving ongoing behaviours (e.g., feeding) and monitoring salient environmental stimuli, understanding the interaction between these functions is crucial. Here, we investigate VTA neuronal activity during distraction from ongoing feeding. We developed a task to assess distraction exploiting self-paced licking in rats. Rats trained to lick for saccharin were given a distraction test, in which three consecutive licks within 1 s triggered a random distractor (e.g. light and tone stimulus). On each trial they were quantified as distracted or not based on the length of their pauses in licking behaviour. We expressed GCaMP6s in VTA neurons and used fibre photometry to record calcium fluctuations during this task as a proxy for neuronal activity. Distractor stimuli caused rats to interrupt their consumption of saccharin, a behavioural effect which quickly habituated with repeat testing. VTA neural activity showed consistent increases to distractor presentations and, furthermore, these responses were greater on distracted trials compared to non-distracted trials. Interestingly, neural responses show a slower habituation than behaviour with consistent VTA responses seen to distractors even after they are no longer distracting. These data highlight the complex role of the VTA in maintaining ongoing appetitive and consummatory behaviours while also monitoring the environment for salient stimuli.


Assuntos
Sacarina , Área Tegmentar Ventral , Animais , Comportamento Animal , Dopamina , Neurônios , Ratos
14.
J Leukoc Biol ; 109(2): 287-297, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32441444

RESUMO

TLR-inducible zinc toxicity is an antimicrobial mechanism utilized by macrophages, however knowledge of molecular mechanisms mediating this response is limited. Here, we show that E. coli exposed to zinc stress within primary human macrophages reside in membrane-bound vesicular compartments. Since SLC30A zinc exporters can deliver zinc into the lumen of vesicles, we examined LPS-regulated mRNA expression of Slc30a/SLC30A family members in primary mouse and human macrophages. A number of these transporters were dynamically regulated in both cell populations. In human monocyte-derived macrophages, LPS strongly up-regulated SLC30A1 mRNA and protein expression. In contrast, SLC30A1 was not LPS-inducible in macrophage-like PMA-differentiated THP-1 cells. We therefore ectopically expressed SLC30A1 in these cells, finding that this was sufficient to promote zinc-containing vesicle formation. The response was similar to that observed following LPS stimulation. Ectopically expressed SLC30A1 localized to both the plasma membrane and intracellular zinc-containing vesicles within LPS-stimulated THP-1 cells. Inducible overexpression of SLC30A1 in THP-1 cells infected with the Escherichia coli K-12 strain MG1655 augmented the zinc stress response of intracellular bacteria and promoted clearance. Furthermore, in THP-1 cells infected with an MG1655 zinc stress reporter strain, all bacteria contained within SLC30A1-positive compartments were subjected to zinc stress. Thus, SLC30A1 marks zinc-containing compartments associated with TLR-inducible zinc toxicity in human macrophages, and its ectopic over-expression is sufficient to initiate this antimicrobial pathway in these cells. Finally, SLC30A1 silencing did not compromise E. coli clearance by primary human macrophages, suggesting that other zinc exporters may also contribute to the zinc toxicity response.


Assuntos
Proteínas de Transporte de Cátions/imunologia , Infecções por Escherichia coli/imunologia , Macrófagos/imunologia , Zinco/imunologia , Animais , Escherichia coli/imunologia , Humanos , Lipopolissacarídeos/imunologia , Macrófagos/microbiologia , Camundongos
15.
Artigo em Inglês | MEDLINE | ID: mdl-31964646

RESUMO

Cannabis sativa, like all known drugs of abuse, leads to increased dopamine activation within the mesolimbic pathway. Consequent dopamine release within terminal regions of the striatum is a powerful mediator of reward and reinforcement and patterned dopamine release is critical for associative learning processes that are fundamentally involved in addiction. The endocannabinoid system modulates dopamine release at multiple sites, and the receptors, endogenous ligands, and synthetic and metabolic enzymes of the endocannabinoid system may provide key targets for pharmacotherapies to treat disorders of motivation including addiction. Disrupting endocannabinoid signaling decreases drug-induced increases in dopamine release as well those dopamine events evoked by conditioned stimuli during reward seeking. Advances in recording techniques for dopamine are allowing unprecedented examinations of these two interacting systems and elucidating the mechanisms of endocannabinoid modulation of dopamine release in reward and addiction.


Assuntos
Encéfalo/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Dopamina/metabolismo , Abuso de Maconha/metabolismo , Recompensa , Animais , Encéfalo/fisiologia , Dronabinol/farmacologia , Endocanabinoides/fisiologia , Humanos , Abuso de Maconha/fisiopatologia , Abuso de Maconha/psicologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Síndrome de Abstinência a Substâncias/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
16.
Neuropsychopharmacology ; 46(2): 394-403, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32737419

RESUMO

Despite the essential role of protein intake for health and development, very little is known about the impact of protein restriction on neurobiological functions, especially at different stages of the lifespan. The dopamine system is a central actor in the integration of food-related processes and is influenced by physiological state and food-related signals. Moreover, it is highly sensitive to dietary effects during early life periods such as adolescence due to its late maturation. In the present study, we investigated the impact of protein restriction either during adolescence or adulthood on the function of the mesolimbic (nucleus accumbens) and nigrostriatal (dorsal striatum) dopamine pathways using fast-scan cyclic voltammetry in rat brain slices. In the nucleus accumbens, protein restriction in adults increased dopamine release in response to low and high frequency trains of stimulation (1-20 Hz). By contrast, protein restriction during adolescence decreased nucleus accumbens dopamine release. In the dorsal striatum, protein restriction at adulthood has no impact on dopamine release but the same diet during adolescence induced a frequency-dependent increase in stimulated dopamine release. Taken together, our results highlight the sensitivity of the different dopamine pathways to the effect of protein restriction, as well as their vulnerability to deleterious diet effects at different life stages.


Assuntos
Dieta com Restrição de Proteínas , Dopamina , Estimulação Elétrica , Núcleo Accumbens
17.
FASEB J ; 34(11): 14572-14587, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32901999

RESUMO

Urinary tract infections (UTI) frequently progress to chronicity in infected individuals but the mechanisms of pathogenesis underlying chronic UTI are not well understood. We examined the role of interleukin (IL)-17A in UTI because this cytokine promotes innate defense against uropathogenic Escherichia coli (UPEC). Analysis of UPEC persistence and pyelonephritis in mice deficient in IL-17A revealed that UPEC CFT073 caused infection at a rate higher than the multidrug resistant strain EC958. Il17a-/- mice exhibited pyelonephritis with kidney bacterial burdens higher than those of wild-type (WT) mice. Synthesis of IL-17A in the bladder reflected a combination of γδ-T and TH 17 cell responses. Analysis of circulating inflammatory mediators at 24h postinoculation identified predictors of progression to chronicity, including IL-6 and monocyte chemoattractant protein-1 (MCP-1). Histological analysis identified infiltrating populations of neutrophils, NK cells, and γδ T cells in the bladder, whereas neutrophils predominated in the kidney. Analysis of the contribution of flagella to chronicity using hyper-flagellated and fliC-deficient UPEC in WT and Il17a-/- mice revealed that, in a host that is deficient for the production of IL-17A, flagella contribute to bacterial persistence. These findings show a role for IL-17A in defense against chronic UTI and a contribution of flagella to the pathogenesis of infection.


Assuntos
Flagelos/metabolismo , Imunidade Inata , Interleucina-17/metabolismo , Subpopulações de Linfócitos T/imunologia , Infecções Urinárias/imunologia , Escherichia coli Uropatogênica/patogenicidade , Animais , Quimiocina CCL2/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Flagelos/genética , Flagelina/genética , Flagelina/metabolismo , Interações Hospedeiro-Patógeno , Interleucina-17/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Bexiga Urinária/citologia , Bexiga Urinária/imunologia , Bexiga Urinária/microbiologia , Infecções Urinárias/genética , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/fisiologia
18.
Nat Microbiol ; 5(11): 1340-1348, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32807890

RESUMO

The IncC family of broad-host-range plasmids enables the spread of antibiotic resistance genes among human enteric pathogens1-3. Although aspects of IncC plasmid conjugation have been well studied4-9, many roles of conjugation genes have been assigned based solely on sequence similarity. We applied hypersaturated transposon mutagenesis and transposon-directed insertion-site sequencing to determine the set of genes required for IncC conjugation. We identified 27 conjugation genes, comprising 19 that were previously identified (including two regulatory genes, acaDC) and eight not previously associated with conjugation. We show that one previously unknown gene, acaB, encodes a transcriptional regulator that has a crucial role in the regulation of IncC conjugation. AcaB binds upstream of the acaDC promoter to increase acaDC transcription; in turn, AcaDC activates the transcription of IncC conjugation genes. We solved the crystal structure of AcaB at 2.9-Å resolution and used this to guide functional analyses that reveal how AcaB binds to DNA. This improved understanding of IncC conjugation provides a basis for the development of new approaches to reduce the spread of these multi-drug-resistance plasmids.


Assuntos
Conjugação Genética/genética , Proteínas de Escherichia coli/metabolismo , Plasmídeos/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Farmacorresistência Bacteriana Múltipla , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Mutagênese , Mutação , Regiões Promotoras Genéticas , Estrutura Secundária de Proteína , Transativadores/química , Transativadores/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica
19.
J Antimicrob Chemother ; 75(6): 1415-1423, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32073605

RESUMO

BACKGROUND: Uropathogenic Escherichia coli (UPEC) are a major cause of urinary tract infection (UTI), one of the most common infectious diseases in humans. UPEC are increasingly associated with resistance to multiple antibiotics. This includes resistance to third-generation cephalosporins, a common class of antibiotics frequently used to treat UTI. METHODS: We employed a high-throughput genome-wide screen using saturated transposon mutagenesis and transposon directed insertion-site sequencing (TraDIS) together with phenotypic resistance assessment to identify key genes required for survival of the MDR UPEC ST131 strain EC958 in the presence of the third-generation cephalosporin cefotaxime. RESULTS: We showed that blaCMY-23 is the major ESBL gene in EC958 responsible for mediating resistance to cefotaxime. Our screen also revealed that mutation of genes involved in cell division and the twin-arginine translocation pathway sensitized EC958 to cefotaxime. The role of these cell-division and protein-secretion genes in cefotaxime resistance was confirmed through the construction of mutants and phenotypic testing. Mutation of these genes also sensitized EC958 to other cephalosporins. CONCLUSIONS: This work provides an exemplar for the application of TraDIS to define molecular mechanisms of resistance to antibiotics. The identification of mutants that sensitize UPEC to cefotaxime, despite the presence of a cephalosporinase, provides a framework for the development of new approaches to treat infections caused by MDR pathogens.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Cefalosporinas/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Proteínas de Escherichia coli/genética , Humanos , Mutagênese , Infecções Urinárias/tratamento farmacológico , Escherichia coli Uropatogênica/genética
20.
Neuroscience ; 447: 155-166, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682949

RESUMO

The study of consummatory responses during food intake represents a unique opportunity to investigate the physiological, psychological and neurobiological processes that control ingestive behavior. Recording the occurrence and temporal organization of individual licks across consumption, also called lickometry, yields a rich data set that can be analyzed to dissect consummatory responses into different licking patterns. These patterns, divided into trains of licks separated by pauses, have been used to deconstruct the many influences on consumption, such as palatability evaluation, incentive properties, and post-ingestive processes. In this review, we describe commonly used definitions of licking patterns and how various studies have defined and measured these. We then discuss how licking patterns can be used to investigate the impact of different physiological need states on processes governing ingestive behavior. We also present new data showing how licking patterns are changed in an animal model of protein appetite and how this may guide food choice in different protein-associated hedonic and homeostatic states. Thus, recording lick microstructure can be achieved relatively easily and represents a useful tool to provide insights, beyond the measurement of total intake, into the multiple factors influencing ingestive behavior.


Assuntos
Comportamento Alimentar , Motivação , Animais , Comportamento Animal , Ingestão de Alimentos , Preferências Alimentares , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...