Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Sci Data ; 10(1): 813, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985666

RESUMO

Somatic mosaicism is defined as an occurrence of two or more populations of cells having genomic sequences differing at given loci in an individual who is derived from a single zygote. It is a characteristic of multicellular organisms that plays a crucial role in normal development and disease. To study the nature and extent of somatic mosaicism in autism spectrum disorder, bipolar disorder, focal cortical dysplasia, schizophrenia, and Tourette syndrome, a multi-institutional consortium called the Brain Somatic Mosaicism Network (BSMN) was formed through the National Institute of Mental Health (NIMH). In addition to genomic data of affected and neurotypical brains, the BSMN also developed and validated a best practices somatic single nucleotide variant calling workflow through the analysis of reference brain tissue. These resources, which include >400 terabytes of data from 1087 subjects, are now available to the research community via the NIMH Data Archive (NDA) and are described here.


Assuntos
Transtornos Mentais , Humanos , Transtorno do Espectro Autista/genética , Encéfalo , Genômica , Mosaicismo , Genoma Humano , Transtornos Mentais/genética
2.
medRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945630

RESUMO

Genomic regulatory elements active in the developing human brain are notably enriched in genetic risk for neuropsychiatric disorders, including autism spectrum disorder (ASD), schizophrenia, and bipolar disorder. However, prioritizing the specific risk genes and candidate molecular mechanisms underlying these genetic enrichments has been hindered by the lack of a single unified large-scale gene regulatory atlas of human brain development. Here, we uniformly process and systematically characterize gene, isoform, and splicing quantitative trait loci (xQTLs) in 672 fetal brain samples from unique subjects across multiple ancestral populations. We identify 15,752 genes harboring a significant xQTL and map 3,739 eQTLs to a specific cellular context. We observe a striking drop in gene expression and splicing heritability as the human brain develops. Isoform-level regulation, particularly in the second trimester, mediates the greatest proportion of heritability across multiple psychiatric GWAS, compared with eQTLs. Via colocalization and TWAS, we prioritize biological mechanisms for ~60% of GWAS loci across five neuropsychiatric disorders, nearly two-fold that observed in the adult brain. Finally, we build a comprehensive set of developmentally regulated gene and isoform co-expression networks capturing unique genetic enrichments across disorders. Together, this work provides a comprehensive view of genetic regulation across human brain development as well as the stage-and cell type-informed mechanistic underpinnings of neuropsychiatric disorders.

3.
Nat Neurosci ; 25(4): 474-483, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35332326

RESUMO

Chromosomal organization, scaling from the 147-base pair (bp) nucleosome to megabase-ranging domains encompassing multiple transcriptional units, including heritability loci for psychiatric traits, remains largely unexplored in the human brain. In this study, we constructed promoter- and enhancer-enriched nucleosomal histone modification landscapes for adult prefrontal cortex from H3-lysine 27 acetylation and H3-lysine 4 trimethylation profiles, generated from 388 controls and 351 individuals diagnosed with schizophrenia (SCZ) or bipolar disorder (BD) (n = 739). We mapped thousands of cis-regulatory domains (CRDs), revealing fine-grained, 104-106-bp chromosomal organization, firmly integrated into Hi-C topologically associating domain stratification by open/repressive chromosomal environments and nuclear topography. Large clusters of hyper-acetylated CRDs were enriched for SCZ heritability, with prominent representation of regulatory sequences governing fetal development and glutamatergic neuron signaling. Therefore, SCZ and BD brains show coordinated dysregulation of risk-associated regulatory sequences assembled into kilobase- to megabase-scaling chromosomal domains.


Assuntos
Transtorno Bipolar , Esquizofrenia , Adulto , Transtorno Bipolar/genética , Encéfalo , Cromatina , Humanos , Lisina/genética , Esquizofrenia/genética
4.
Biol Psychiatry ; 91(1): 92-101, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34154796

RESUMO

BACKGROUND: While schizophrenia differs between males and females in the age of onset, symptomatology, and disease course, the molecular mechanisms underlying these differences remain uncharacterized. METHODS: To address questions about the sex-specific effects of schizophrenia, we performed a large-scale transcriptome analysis of RNA sequencing data from 437 controls and 341 cases from two distinct cohorts from the CommonMind Consortium. RESULTS: Analysis across the cohorts identified a reproducible gene expression signature of schizophrenia that was highly concordant with previous work. Differential expression across sex was reproducible across cohorts and identified X- and Y-linked genes, as well as those involved in dosage compensation. Intriguingly, the sex expression signature was also enriched for genes involved in neurexin family protein binding and synaptic organization. Differential expression analysis testing a sex-by-diagnosis interaction effect did not identify any genome-wide signature after multiple testing corrections. Gene coexpression network analysis was performed to reduce dimensionality from thousands of genes to dozens of modules and elucidate interactions among genes. We found enrichment of coexpression modules for sex-by-diagnosis differential expression signatures, which were highly reproducible across the two cohorts and involved a number of diverse pathways, including neural nucleus development, neuron projection morphogenesis, and regulation of neural precursor cell proliferation. CONCLUSIONS: Overall, our results indicate that the effect size of sex differences in schizophrenia gene expression signatures is small and underscore the challenge of identifying robust sex-by-diagnosis signatures, which will require future analyses in larger cohorts.


Assuntos
Esquizofrenia , Transcriptoma , Encéfalo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Esquizofrenia/genética , Caracteres Sexuais
5.
Genome Biol ; 22(1): 92, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781308

RESUMO

BACKGROUND: Post-zygotic mutations incurred during DNA replication, DNA repair, and other cellular processes lead to somatic mosaicism. Somatic mosaicism is an established cause of various diseases, including cancers. However, detecting mosaic variants in DNA from non-cancerous somatic tissues poses significant challenges, particularly if the variants only are present in a small fraction of cells. RESULTS: Here, the Brain Somatic Mosaicism Network conducts a coordinated, multi-institutional study to examine the ability of existing methods to detect simulated somatic single-nucleotide variants (SNVs) in DNA mixing experiments, generate multiple replicates of whole-genome sequencing data from the dorsolateral prefrontal cortex, other brain regions, dura mater, and dural fibroblasts of a single neurotypical individual, devise strategies to discover somatic SNVs, and apply various approaches to validate somatic SNVs. These efforts lead to the identification of 43 bona fide somatic SNVs that range in variant allele fractions from ~ 0.005 to ~ 0.28. Guided by these results, we devise best practices for calling mosaic SNVs from 250× whole-genome sequencing data in the accessible portion of the human genome that achieve 90% specificity and sensitivity. Finally, we demonstrate that analysis of multiple bulk DNA samples from a single individual allows the reconstruction of early developmental cell lineage trees. CONCLUSIONS: This study provides a unified set of best practices to detect somatic SNVs in non-cancerous tissues. The data and methods are freely available to the scientific community and should serve as a guide to assess the contributions of somatic SNVs to neuropsychiatric diseases.


Assuntos
Encéfalo/metabolismo , Estudos de Associação Genética , Variação Genética , Alelos , Mapeamento Cromossômico , Biologia Computacional/métodos , Estudos de Associação Genética/métodos , Genômica/métodos , Células Germinativas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Especificidade de Órgãos/genética , Polimorfismo de Nucleotídeo Único
6.
Curr Protoc Hum Genet ; 108(1): e105, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33085189

RESUMO

The AD Knowledge Portal (adknowledgeportal.org) is a public data repository that shares data and other resources generated by multiple collaborative research programs focused on aging, dementia, and Alzheimer's disease (AD). In this article, we highlight how to use the Portal to discover and download genomic variant and transcriptomic data from the same individuals. First, we show how to use the web interface to browse and search for data of interest using relevant file annotations. We demonstrate how to learn more about the context surrounding the data, including diagnostic criteria and methodological details about sample preparation and data analysis. We present two primary ways to download data-using a web interface, and using a programmatic method that provides access using the command line. Finally, we show how to merge separate sources of metadata into a comprehensive file that contains factors and covariates necessary in downstream analyses. © 2020 The Authors. Basic Protocol 1: Find and download files associated with a selected study Basic Protocol 2: Download files in bulk using the command line client Basic Protocol 3: Working with file annotations and metadata.


Assuntos
Envelhecimento , Doença de Alzheimer/terapia , Bases de Dados Genéticas/estatística & dados numéricos , Genômica/métodos , Armazenamento e Recuperação da Informação/métodos , Software , Doença de Alzheimer/diagnóstico , Genômica/estatística & dados numéricos , Humanos , Internet
7.
Sci Data ; 7(1): 340, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046718

RESUMO

The availability of high-quality RNA-sequencing and genotyping data of post-mortem brain collections from consortia such as CommonMind Consortium (CMC) and the Accelerating Medicines Partnership for Alzheimer's Disease (AMP-AD) Consortium enable the generation of a large-scale brain cis-eQTL meta-analysis. Here we generate cerebral cortical eQTL from 1433 samples available from four cohorts (identifying >4.1 million significant eQTL for >18,000 genes), as well as cerebellar eQTL from 261 samples (identifying 874,836 significant eQTL for >10,000 genes). We find substantially improved power in the meta-analysis over individual cohort analyses, particularly in comparison to the Genotype-Tissue Expression (GTEx) Project eQTL. Additionally, we observed differences in eQTL patterns between cerebral and cerebellar brain regions. We provide these brain eQTL as a resource for use by the research community. As a proof of principle for their utility, we apply a colocalization analysis to identify genes underlying the GWAS association peaks for schizophrenia and identify a potentially novel gene colocalization with lncRNA RP11-677M14.2 (posterior probability of colocalization 0.975).


Assuntos
Córtex Cerebelar/metabolismo , Córtex Cerebral/metabolismo , Perfilação da Expressão Gênica , Locos de Características Quantitativas , Conjuntos de Dados como Assunto , Estudo de Associação Genômica Ampla , Humanos , Metanálise como Assunto , RNA Longo não Codificante/genética , Esquizofrenia/genética
8.
Nat Commun ; 11(1): 2990, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533064

RESUMO

Structural variants (SVs) contribute to many disorders, yet, functionally annotating them remains a major challenge. Here, we integrate SVs with RNA-sequencing from human post-mortem brains to quantify their dosage and regulatory effects. We show that genic and regulatory SVs exist at significantly lower frequencies than intergenic SVs. Functional impact of copy number variants (CNVs) stems from both the proportion of genic and regulatory content altered and loss-of-function intolerance of the gene. We train a linear model to predict expression effects of rare CNVs and use it to annotate regulatory disruption of CNVs from 14,891 independent genome-sequenced individuals. Pathogenic deletions implicated in neurodevelopmental disorders show significantly more extreme regulatory disruption scores and if rank ordered would be prioritized higher than using frequency or length alone. This work shows the deleteriousness of regulatory SVs, particularly those altering CTCF sites and provides a simple approach for functionally annotating the regulatory consequences of CNVs.


Assuntos
Encéfalo/metabolismo , Variações do Número de Cópias de DNA , Regulação da Expressão Gênica , Variação Genética , Genoma Humano/genética , Autopsia/métodos , Encéfalo/patologia , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Transtornos do Neurodesenvolvimento/genética , Análise de Sequência de RNA/métodos
9.
Sci Data ; 6(1): 180, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551426

RESUMO

Schizophrenia and bipolar disorder are serious mental illnesses that affect more than 2% of adults. While large-scale genetics studies have identified genomic regions associated with disease risk, less is known about the molecular mechanisms by which risk alleles with small effects lead to schizophrenia and bipolar disorder. In order to fill this gap between genetics and disease phenotype, we have undertaken a multi-cohort genomics study of postmortem brains from controls, individuals with schizophrenia and bipolar disorder. Here we present a public resource of functional genomic data from the dorsolateral prefrontal cortex (DLPFC; Brodmann areas 9 and 46) of 986 individuals from 4 separate brain banks, including 353 diagnosed with schizophrenia and 120 with bipolar disorder. The genomic data include RNA-seq and SNP genotypes on 980 individuals, and ATAC-seq on 269 individuals, of which 264 are a subset of individuals with RNA-seq. We have performed extensive preprocessing and quality control on these data so that the research community can take advantage of this public resource available on the Synapse platform at http://CommonMind.org .


Assuntos
Transtorno Bipolar , Esquizofrenia , Transtorno Bipolar/genética , Transtorno Bipolar/patologia , Estudos de Coortes , Epigenômica , Humanos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Esquizofrenia/genética , Esquizofrenia/patologia , Transcriptoma
10.
Mol Psychiatry ; 24(11): 1685-1695, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-29740122

RESUMO

Transcription at enhancers is a widespread phenomenon which produces so-called enhancer RNA (eRNA) and occurs in an activity-dependent manner. However, the role of eRNA and its utility in exploring disease-associated changes in enhancer function, and the downstream coding transcripts that they regulate, is not well established. We used transcriptomic and epigenomic data to interrogate the relationship of eRNA transcription to disease status and how genetic variants alter enhancer transcriptional activity in the human brain. We combined RNA-seq data from 537 postmortem brain samples from the CommonMind Consortium with cap analysis of gene expression and enhancer identification, using the assay for transposase-accessible chromatin followed by sequencing (ATACseq). We find 118 differentially transcribed eRNAs in schizophrenia and identify schizophrenia-associated gene/eRNA co-expression modules. Perturbations of a key module are associated with the polygenic risk scores. Furthermore, we identify genetic variants affecting expression of 927 enhancers, which we refer to as enhancer expression quantitative loci or eeQTLs. Enhancer expression patterns are consistent across studies, including differentially expressed eRNAs and eeQTLs. Combining eeQTLs with a genome-wide association study of schizophrenia identifies a genetic variant that alters enhancer function and expression of its target gene, GOLPH3L. Our novel approach to analyzing enhancer transcription is adaptable to other large-scale, non-poly-A depleted, RNA-seq studies.


Assuntos
Elementos Facilitadores Genéticos/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , Adulto , Estudos de Casos e Controles , Cromatina/genética , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Córtex Pré-Frontal , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas/genética , RNA/genética , RNA não Traduzido/genética , Transcrição Gênica/genética
11.
Science ; 362(6420)2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30545856

RESUMO

Most genetic risk for psychiatric disease lies in regulatory regions, implicating pathogenic dysregulation of gene expression and splicing. However, comprehensive assessments of transcriptomic organization in diseased brains are limited. In this work, we integrated genotypes and RNA sequencing in brain samples from 1695 individuals with autism spectrum disorder (ASD), schizophrenia, and bipolar disorder, as well as controls. More than 25% of the transcriptome exhibits differential splicing or expression, with isoform-level changes capturing the largest disease effects and genetic enrichments. Coexpression networks isolate disease-specific neuronal alterations, as well as microglial, astrocyte, and interferon-response modules defining previously unidentified neural-immune mechanisms. We integrated genetic and genomic data to perform a transcriptome-wide association study, prioritizing disease loci likely mediated by cis effects on brain expression. This transcriptome-wide characterization of the molecular pathology across three major psychiatric disorders provides a comprehensive resource for mechanistic insight and therapeutic development.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno Bipolar/genética , Predisposição Genética para Doença , Splicing de RNA , Esquizofrenia/genética , Encéfalo/metabolismo , Humanos , Isoformas de Proteínas/genética , Análise de Sequência de RNA , Transcriptoma
12.
Sci Data ; 5: 180185, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30204156

RESUMO

Alzheimer's disease (AD) affects half the US population over the age of 85 and is universally fatal following an average course of 10 years of progressive cognitive disability. Genetic and genome-wide association studies (GWAS) have identified about 33 risk factor genes for common, late-onset AD (LOAD), but these risk loci fail to account for the majority of affected cases and can neither provide clinically meaningful prediction of development of AD nor offer actionable mechanisms. This cohort study generated large-scale matched multi-Omics data in AD and control brains for exploring novel molecular underpinnings of AD. Specifically, we generated whole genome sequencing, whole exome sequencing, transcriptome sequencing and proteome profiling data from multiple regions of 364 postmortem control, mild cognitive impaired (MCI) and AD brains with rich clinical and pathophysiological data. All the data went through rigorous quality control. Both the raw and processed data are publicly available through the Synapse software platform.


Assuntos
Doença de Alzheimer , Proteoma , Transcriptoma , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Disfunção Cognitiva/genética , Estudos de Coortes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genômica , Humanos , Proteômica
13.
Sci Data ; 5: 180142, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30084846

RESUMO

We initiated the systematic profiling of the dorsolateral prefrontal cortex obtained from a subset of autopsied individuals enrolled in the Religious Orders Study (ROS) or the Rush Memory and Aging Project (MAP), which are jointly designed prospective studies of aging and dementia with detailed, longitudinal cognitive phenotyping during life and a quantitative, structured neuropathologic examination after death. They include over 3,322 subjects. Here, we outline the first generation of data including genome-wide genotypes (n=2,090), whole genome sequencing (n=1,179), DNA methylation (n=740), chromatin immunoprecipitation with sequencing using an anti-Histone 3 Lysine 9 acetylation (H3K9Ac) antibody (n=712), RNA sequencing (n=638), and miRNA profile (n=702). Generation of other omic data including ATACseq, proteomic and metabolomics profiles is ongoing. Thanks to its prospective design and recruitment of older, non-demented individuals, these data can be repurposed to investigate a large number of syndromic and quantitative neuroscience phenotypes. The many subjects that are cognitively non-impaired at death also offer insights into the biology of the human brain in older non-impaired individuals.


Assuntos
Doença de Alzheimer , Lobo Frontal , Genoma Humano , Proteômica , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Imunoprecipitação da Cromatina , Metilação de DNA , Feminino , Lobo Frontal/fisiologia , Humanos , Masculino , Metaboloma , Metabolômica , Análise de Sequência de RNA
14.
Nat Neurosci ; 21(8): 1126-1136, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30038276

RESUMO

Risk variants for schizophrenia affect more than 100 genomic loci, yet cell- and tissue-specific roles underlying disease liability remain poorly characterized. We have generated for two cortical areas implicated in psychosis, the dorsolateral prefrontal cortex and anterior cingulate cortex, 157 reference maps from neuronal, neuron-depleted and bulk tissue chromatin for two histone marks associated with active promoters and enhancers, H3-trimethyl-Lys4 (H3K4me3) and H3-acetyl-Lys27 (H3K27ac). Differences between neuronal and neuron-depleted chromatin states were the major axis of variation in histone modification profiles, followed by substantial variability across subjects and cortical areas. Thousands of significant histone quantitative trait loci were identified in neuronal and neuron-depleted samples. Risk variants for schizophrenia, depressive symptoms and neuroticism were significantly over-represented in neuronal H3K4me3 and H3K27ac landscapes. Our Resource, sponsored by PsychENCODE and CommonMind, highlights the critical role of cell-type-specific signatures at regulatory and disease-associated noncoding sequences in the human frontal lobe.


Assuntos
Epigênese Genética/genética , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Histonas/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , Doença de Alzheimer/genética , Mapeamento Encefálico , Cromatina/genética , Depressão/genética , Depressão/patologia , Escolaridade , Predisposição Genética para Doença/genética , Variação Genética , Estudo de Associação Genômica Ampla , Giro do Cíngulo/patologia , Humanos , Transtornos Neuróticos/genética , Transtornos Neuróticos/patologia , Córtex Pré-Frontal/patologia , Risco
15.
Sci Data ; 4: 170140, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29039849

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease presenting major health and economic challenges that continue to grow. Mechanisms of disease are poorly understood but significant data point to metabolic defects that might contribute to disease pathogenesis. The Alzheimer Disease Metabolomics Consortium (ADMC) in partnership with Alzheimer Disease Neuroimaging Initiative (ADNI) is creating a comprehensive biochemical database for AD. Using targeted and non- targeted metabolomics and lipidomics platforms we are mapping metabolic pathway and network failures across the trajectory of disease. In this report we present quantitative metabolomics data generated on serum from 199 control, 356 mild cognitive impairment and 175 AD subjects enrolled in ADNI1 using AbsoluteIDQ-p180 platform, along with the pipeline for data preprocessing and medication classification for confound correction. The dataset presented here is the first of eight metabolomics datasets being generated for broad biochemical investigation of the AD metabolome. We expect that these collective metabolomics datasets will provide valuable resources for researchers to identify novel molecular mechanisms contributing to AD pathogenesis and disease phenotypes.


Assuntos
Doença de Alzheimer , Metabolômica , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Disfunção Cognitiva , Estudos de Coortes , Humanos , Neuroimagem
16.
Biol Psychiatry ; 81(2): 162-170, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27113501

RESUMO

BACKGROUND: The nervous system may include more than 100 residue-specific posttranslational modifications of histones forming the nucleosome core that are often regulated in cell-type-specific manner. On a genome-wide scale, some of the histone posttranslational modification landscapes show significant overlap with the genetic risk architecture for several psychiatric disorders, fueling PsychENCODE and other large-scale efforts to comprehensively map neuronal and nonneuronal epigenomes in hundreds of specimens. However, practical guidelines for efficient generation of histone chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) datasets from postmortem brains are needed. METHODS: Protocols and quality controls are given for the following: 1) extraction, purification, and NeuN neuronal marker immunotagging of nuclei from adult human cerebral cortex; 2) fluorescence-activated nuclei sorting; 3) preparation of chromatin by micrococcal nuclease digest; 4) ChIP for open chromatin-associated histone methylation and acetylation; and 5) generation and sequencing of ChIP-seq libraries. RESULTS: We present a ChIP-seq pipeline for epigenome mapping in the neuronal and nonneuronal nuclei from the postmortem brain. This includes a stepwise system of quality controls and user-friendly data presentation platforms. CONCLUSIONS: Our practical guidelines will be useful for projects aimed at histone posttranslational modification mapping in chromatin extracted from hundreds of postmortem brain samples in cell-type-specific manner.


Assuntos
Córtex Cerebral/metabolismo , Epigênese Genética , Epigenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Histonas/metabolismo , Nucleossomos/metabolismo , Acetilação , Antígenos Nucleares/metabolismo , Imunoprecipitação da Cromatina , Humanos , Metilação , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional
17.
Sci Data ; 3: 160089, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27727239

RESUMO

Previous genome-wide association studies (GWAS), conducted by our group and others, have identified loci that harbor risk variants for neurodegenerative diseases, including Alzheimer's disease (AD). Human disease variants are enriched for polymorphisms that affect gene expression, including some that are known to associate with expression changes in the brain. Postulating that many variants confer risk to neurodegenerative disease via transcriptional regulatory mechanisms, we have analyzed gene expression levels in the brain tissue of subjects with AD and related diseases. Herein, we describe our collective datasets comprised of GWAS data from 2,099 subjects; microarray gene expression data from 773 brain samples, 186 of which also have RNAseq; and an independent cohort of 556 brain samples with RNAseq. We expect that these datasets, which are available to all qualified researchers, will enable investigators to explore and identify transcriptional mechanisms contributing to neurodegenerative diseases.


Assuntos
Doença de Alzheimer/genética , Genoma Humano , Doenças Neurodegenerativas/genética , Transcriptoma , Estudo de Associação Genômica Ampla , Humanos
18.
Nat Neurosci ; 19(11): 1442-1453, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27668389

RESUMO

Over 100 genetic loci harbor schizophrenia-associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of people with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ∼20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Altering expression of FURIN, TSNARE1 or CNTN4 changed neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yielded abnormal migration. Of 693 genes showing significant case-versus-control differential expression, their fold changes were ≤ 1.33, and an independent cohort yielded similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show that schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases.


Assuntos
Regulação da Expressão Gênica/genética , Predisposição Genética para Doença , Herança Multifatorial/genética , Esquizofrenia/genética , Encéfalo/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Risco
20.
Respir Res ; 13: 92, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23061798

RESUMO

BACKGROUND: Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. METHODS: Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. RESULTS: An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. CONCLUSIONS: These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease.


Assuntos
Quimiocina CCL11/metabolismo , Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos , Fator 2 Relacionado a NF-E2/genética , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...