Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
medRxiv ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38978673

RESUMO

H3K27M-mutant diffuse midline gliomas (DMGs) express high levels of the GD2 disialoganglioside and chimeric antigen receptor modified T-cells targeting GD2 (GD2-CART) eradicate DMGs in preclinical models. Arm A of the Phase I trial NCT04196413 administered one IV dose of autologous GD2-CART to patients with H3K27M-mutant pontine (DIPG) or spinal (sDMG) diffuse midline glioma at two dose levels (DL1=1e6/kg; DL2=3e6/kg) following lymphodepleting (LD) chemotherapy. Patients with clinical or imaging benefit were eligible for subsequent intracerebroventricular (ICV) GD2-CART infusions (10-30e6 GD2-CART). Primary objectives were manufacturing feasibility, tolerability, and identification of a maximally tolerated dose of IV GD2-CART. Secondary objectives included preliminary assessments of benefit. Thirteen patients enrolled and 11 received IV GD2-CART on study [n=3 DL1(3 DIPG); n=8 DL2(6 DIPG/2 sDMG). GD2-CART manufacturing was successful for all patients. No dose-limiting toxicities (DLTs) occurred on DL1, but three patients experienced DLT on DL2 due to grade 4 cytokine release syndrome (CRS). Nine patients received ICV infusions, which were not associated with DLTs. All patients exhibited tumor inflammation-associated neurotoxicity (TIAN). Four patients demonstrated major volumetric tumor reductions (52%, 54%, 91% and 100%). One patient exhibited a complete response ongoing for >30 months since enrollment. Eight patients demonstrated neurological benefit based upon a protocol-directed Clinical Improvement Score. Sequential IV followed by ICV GD2-CART induced tumor regressions and neurological improvements in patients with DIPG and sDMG. DL1 was established as the maximally tolerated IV GD2-CART dose. Neurotoxicity was safely managed with intensive monitoring and close adherence to a management algorithm.

2.
J Clin Sleep Med ; 19(5): 941-946, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36722607

RESUMO

STUDY OBJECTIVES: To evaluate for potential interactions between magnetic positive airway pressure (mPAP) masks and cardiac implantable electronic devices (CIEDs) for patients with sleep apnea. METHODS: Adult patients with a CIED who used an mPAP mask were recruited from our sleep clinic to undergo a safety visit at our pacemaker clinic. We tested whether the mPAP interacted with the implanted device at home during normal use and in the clinic during simulated normal use and with direct contact. The magnetic field strength of 6 mPAP masks was tested with a gaussmeter. RESULTS: Of 13 patients tested, 1 (8%), wearing a full face mask (ResMed AirFit F30 [ResMed, San Diego, California]), had a magnet response event (interaction) with direct contact, but no interactions were identified during normal or simulated normal use in any patient. The magnetic field strength of the mPAP masks increased the closer the mask got to the CIED, from 0.4 mT (4 G) at the mask manufacturer's recommended 5.1-cm (2-inch) distance from an implanted medical device up to 291 mT (2,910 G) at 0 cm (0 inches; direct contact). CONCLUSIONS: An mPAP mask may interact with a CIED if placed directly on the skin overlying the CIED. The use of Philips Respironics (Philips, Cambridge, Massachusetts) mPAP masks is now contraindicated in patients with a CIED. Until additional studies are conducted to better document the risks and benefits of mPAP masks, we recommend discouraging patients with CIEDs from using any mPAP mask. CITATION: Ruoff CM, Tashman YS, Cheema KPK, et al. Interaction of positive airway pressure mask magnets with cardiac implantable electronic devices. J Clin Sleep Med. 2023;19(5):941-946.


Assuntos
Imãs , Síndromes da Apneia do Sono , Adulto , Humanos , Próteses e Implantes
3.
Biochemistry ; 62(3): 633-644, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34985287

RESUMO

Autophagy-related proteins (Atgs) drive the lysosome-mediated degradation pathway, autophagy, to enable the clearance of dysfunctional cellular components and maintain homeostasis. In humans, this process is driven by the mammalian Atg8 (mAtg8) family of proteins comprising the LC3 and GABARAP subfamilies. The mAtg8 proteins play essential roles in the formation and maturation of autophagosomes and the capture of specific cargo through binding to the conserved LC3-interacting region (LIR) sequence within target proteins. Modulation of interactions of mAtg8 with its target proteins via small-molecule ligands would enable further interrogation of their function. Here we describe unbiased fragment and DNA-encoded library (DEL) screening approaches for discovering LC3 small-molecule ligands. Both strategies resulted in compounds that bind to LC3, with the fragment hits favoring a conserved hydrophobic pocket in mATG8 proteins, as detailed by LC3A-fragment complex crystal structures. Our findings demonstrate that the malleable LIR-binding surface can be readily targeted by fragments; however, rational design of additional interactions to drive increased affinity proved challenging. DEL libraries, which combine small, fragment-like building blocks into larger scaffolds, yielded higher-affinity binders and revealed an unexpected potential for reversible, covalent ligands. Moreover, DEL hits identified possible vectors for synthesizing fluorescent probes or bivalent molecules for engineering autophagic degradation of specific targets.


Assuntos
Autofagia , Proteínas Associadas aos Microtúbulos , Humanos , Animais , Proteínas Associadas aos Microtúbulos/metabolismo , Ligantes , Família da Proteína 8 Relacionada à Autofagia/química , Autofagossomos/metabolismo , Mamíferos/metabolismo
4.
Evol Appl ; 15(7): 1079-1098, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35899258

RESUMO

The vertebrate sodium-iodide symporter (NIS or SLC5A5) transports iodide into the thyroid follicular cells that synthesize thyroid hormone. The SLC5A protein family includes transporters of vitamins, minerals, and nutrients. Disruption of SLC5A5 function by perchlorate, a pervasive environmental contaminant, leads to human pathologies, especially hypothyroidism. Perchlorate also disrupts the sexual development of model animals, including threespine stickleback (Gasterosteus aculeatus) and zebrafish (Danio rerio), but the mechanism of action is unknown. To test the hypothesis that SLC5A5 paralogs are expressed in tissues necessary for the development of reproductive organs, and therefore are plausible candidates to mediate the effects of perchlorate on sexual development, we first investigated the evolutionary history of Slc5a paralogs to better understand potential functional trajectories of the gene family. We identified two clades of slc5a paralogs with respect to an outgroup of sodium/choline cotransporters (slc5a7); these clades are the NIS clade of sodium/iodide and lactate cotransporters (slc5a5, slc5a6, slc5a8, slc5a8, and slc5a12) and the SGLT clade of sodium/glucose cotransporters (slc5a1, slc5a2, slc5a3, slc5a4, slc5a10, and slc5a11). We also characterized expression patterns of slc5a genes during development. Stickleback embryos and early larvae expressed NIS clade genes in connective tissue, cartilage, teeth, and thyroid. Stickleback males and females expressed slc5a5 and its paralogs in gonads. Single-cell transcriptomics (scRNA-seq) on zebrafish sex-genotyped gonads revealed that NIS clade-expressing cells included germ cells (slc5a5, slc5a6a, and slc5a6b) and gonadal soma cells (slc5a8l). These results are consistent with the hypothesis that perchlorate exerts its effects on sexual development by interacting with slc5a5 or its paralogs in reproductive tissues. These findings show novel expression domains of slc5 genes in stickleback and zebrafish, which suggest similar functions across vertebrates including humans, and provide candidates to mediate the effects of perchlorate on sexual development.

5.
BMC Pediatr ; 21(1): 404, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521358

RESUMO

BACKGROUND: Relatively little is known about protective factors and the emergence and maintenance of positive outcomes in the field of adolescents with chronic conditions. Therefore, the primary aim of the study is to acquire a deeper understanding of the dynamic process of resilience factors, coping strategies and psychosocial adjustment of adolescents living with chronic conditions. METHODS/DESIGN: We plan to consecutively recruit N = 450 adolescents (12-21 years) from three German patient registries for chronic conditions (type 1 diabetes, cystic fibrosis, or juvenile idiopathic arthritis). Based on screening for anxiety and depression, adolescents are assigned to two parallel groups - "inconspicuous" (PHQ-9 and GAD-7 < 7) vs. "conspicuous" (PHQ-9 or GAD-7 ≥ 7) - participating in a prospective online survey at baseline and 12-month follow-up. At two time points (T1, T2), we assess (1) intra- and interpersonal resiliency factors, (2) coping strategies, and (3) health-related quality of life, well-being, satisfaction with life, anxiety and depression. Using a cross-lagged panel design, we will examine the bidirectional longitudinal relations between resiliency factors and coping strategies, psychological adaptation, and psychosocial adjustment. To monitor Covid-19 pandemic effects, participants are also invited to take part in an intermediate online survey. DISCUSSION: The study will provide a deeper understanding of adaptive, potentially modifiable processes and will therefore help to develop novel, tailored interventions supporting a positive adaptation in youths with a chronic condition. These strategies should not only support those at risk but also promote the maintenance of a successful adaptation. TRIAL REGISTRATION: German Clinical Trials Register (DRKS), no. DRKS00025125 . Registered on May 17, 2021.


Assuntos
COVID-19 , Qualidade de Vida , Adaptação Psicológica , Adolescente , Criança , Depressão/epidemiologia , Humanos , Estudos Multicêntricos como Assunto , Estudos Observacionais como Assunto , Pandemias , Estudos Prospectivos , SARS-CoV-2 , Adulto Jovem
6.
Org Lett ; 21(22): 9001-9004, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31664846

RESUMO

DNA-encoded libraries (DELs) have generated recent interest due to their ability to provide new small molecule ligands for pharmaceutically important proteins. The chemical diversity of DELs determines their ability to provide potent, novel, and drug-like chemical matter, and DEL chemical diversity is limited by the scope of DNA-compatible chemical reactions. Herein, the one-pot three-component Van Leusen chemistry is applied to DEL synthesis, providing the first reported DNA-compatible method to generate novel highly functionalized imidazoles.


Assuntos
DNA/química , Imidazóis/síntese química , Ciclização , Imidazóis/química , Estrutura Molecular , Bibliotecas de Moléculas Pequenas
7.
ACS Chem Biol ; 14(1): 37-49, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30452219

RESUMO

The importance of Discoidin Domain Receptor 1 (DDR1) in renal fibrosis has been shown via gene knockout and use of antisense oligonucleotides; however, these techniques act via a reduction of DDR1 protein, while we prove the therapeutic potential of inhibiting DDR1 phosphorylation with a small molecule. To date, efforts to generate a selective small-molecule to specifically modulate the activity of DDR1 in an in vivo model have been unsuccessful. We performed parallel DNA encoded library screens against DDR1 and DDR2, and discovered a chemical series that is highly selective for DDR1 over DDR2. Structure-guided optimization efforts yielded the potent DDR1 inhibitor 2.45, which possesses excellent kinome selectivity (including 64-fold selectivity over DDR2 in a biochemical assay), a clean in vitro safety profile, and favorable pharmacokinetic and physicochemical properties. As desired, compound 2.45 modulates DDR1 phosphorylation in vitro as well as prevents collagen-induced activation of renal epithelial cells expressing DDR1. Compound 2.45 preserves renal function and reduces tissue damage in Col4a3-/- mice (the preclinical mouse model of Alport syndrome) when employing a therapeutic dosing regime, indicating the real therapeutic value of selectively inhibiting DDR1 phosphorylation in vivo. Our results may have wider significance as Col4a3-/- mice also represent a model for chronic kidney disease, a disease which affects 10% of the global population.


Assuntos
DNA/genética , Receptor com Domínio Discoidina 1/antagonistas & inibidores , Rim/fisiopatologia , Nefrite Hereditária/genética , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Testes de Função Renal , Camundongos , Camundongos Knockout , Nefrite Hereditária/fisiopatologia , Fosforilação , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
9.
ACS Comb Sci ; 19(4): 234-238, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28287689

RESUMO

To optimize future DNA-encoded library design, we have attempted to quantify the library size at which the signal becomes undetectable. To accomplish this we (i) have calculated that percent yields of individual library members following a screen range from 0.002 to 1%, (ii) extrapolated that ∼1 million copies per library member are required at the outset of a screen, and (iii) from this extrapolation predict that false negative rates will begin to outweigh the benefit of increased diversity at library sizes >108. The above analysis is based upon a large internal data set comprising multiple screens, targets, and libraries; we also augmented our internal data with all currently available literature data. In theory, high false negative rates may be overcome by employing larger amounts of library; however, we argue that using more than currently reported amounts of library (≫10 nmoles) is impractical. The above conclusions may be generally applicable to other DNA encoded library platforms, particularly those platforms that do not allow for library amplification.


Assuntos
DNA/química , Técnicas de Química Combinatória , Descoberta de Drogas , Estrutura Molecular , Bibliotecas de Moléculas Pequenas
10.
Gen Comp Endocrinol ; 243: 60-69, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815158

RESUMO

Perchlorate is a ubiquitous environmental contaminant that has widespread endocrine disrupting effects in vertebrates, including threespine stickleback (Gasterosteus aculeatus). The target of perchlorate is thyroid tissue where it induces changes in the organization, activation, and morphology of thyroid follicles and surrounding tissues. To test the hypothesis that some phenotypes of perchlorate toxicity are not mediated by thyroid hormone, we chronically exposed stickleback beginning at fertilization to perchlorate (10, 30, 100ppm) or control water with and without supplementation of either iodide or thyroxine (T4). Stickleback were sampled across a one-year timespan to identify potential differences in responses to treatment combinations before and after sexual maturation. We found that most thyroid histomorphological phenotypes induced by perchlorate (follicle proliferation, reduced follicle area (adults only), colloid depletion, thyrocyte hypertrophy (subadults only)) were significantly ameliorated by exogenous iodide supplementation. In contrast, treatment with exogenous T4 did not correct any of the thyroid-specific histopathologies induced by perchlorate. Whole-body thyroid hormone concentrations were not significantly affected by perchlorate exposure; however, supplementation with iodide and T4 significantly increased T4 concentrations. This study also revealed an increased erythrocyte area in the thyroid region of perchlorate-exposed adults, while lipid droplet number increased in perchlorate-exposed subadults. Increased erythrocyte area was ameliorated by both iodide and T4, while neither supplement was able to correct lipid droplet number. Our finding on lipid droplets indicates that exposure to perchlorate in early development may have obesogenic effects.


Assuntos
Iodetos/farmacologia , Percloratos/toxicidade , Disgenesia da Tireoide/prevenção & controle , Células Epiteliais da Tireoide/efeitos dos fármacos , Glândula Tireoide/efeitos dos fármacos , Tiroxina/farmacologia , Animais , Fenótipo , Maturidade Sexual/efeitos dos fármacos , Smegmamorpha , Disgenesia da Tireoide/induzido quimicamente
11.
Nat Genet ; 48(10): 1171-1184, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27618452

RESUMO

To dissect the genetic architecture of blood pressure and assess effects on target organ damage, we analyzed 128,272 SNPs from targeted and genome-wide arrays in 201,529 individuals of European ancestry, and genotypes from an additional 140,886 individuals were used for validation. We identified 66 blood pressure-associated loci, of which 17 were new; 15 harbored multiple distinct association signals. The 66 index SNPs were enriched for cis-regulatory elements, particularly in vascular endothelial cells, consistent with a primary role in blood pressure control through modulation of vascular tone across multiple tissues. The 66 index SNPs combined in a risk score showed comparable effects in 64,421 individuals of non-European descent. The 66-SNP blood pressure risk score was significantly associated with target organ damage in multiple tissues but with minor effects in the kidney. Our findings expand current knowledge of blood pressure-related pathways and highlight tissues beyond the classical renal system in blood pressure regulation.


Assuntos
Pressão Sanguínea/genética , Povo Asiático/genética , População Negra/genética , Células Cultivadas , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/genética , Hipertensão/patologia , Análise em Microsséries , Polimorfismo de Nucleotídeo Único
13.
PLoS One ; 11(7): e0157792, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27383240

RESUMO

Perchlorate is a common aquatic contaminant that has long been known to affect thyroid function in vertebrates, including humans. More recently perchlorate has been shown to affect primordial sexual differentiation in the aquatic model fishes zebrafish and threespine stickleback, but the mechanism has been unclear. Stickleback exposed to perchlorate from fertilization have increased androgen levels in the embryo and disrupted reproductive morphologies as adults, suggesting that perchlorate could disrupt the earliest stages of primordial sexual differentiation when primordial germ cells (PGCs) begin to form the gonad. Female stickleback have three to four times the number of PGCs as males during the first weeks of development. We hypothesized that perchlorate exposure affects primordial sexual differentiation by reducing the number of germ cells in the gonad during an important window of stickleback sex determination at 14-18 days post fertilization (dpf). We tested this hypothesis by quantifying the number of PGCs at 16 dpf in control and 100 mg/L perchlorate-treated male and female stickleback. Perchlorate exposure from the time of fertilization resulted in significantly reduced PGC number only in genotypic females, suggesting that the masculinizing effects of perchlorate observed in adult stickleback may result from early changes to the number of PGCs at a time critical for sex determination. To our knowledge, this is the first evidence of a connection between an endocrine disruptor and reduction in PGC number prior to the first meiosis during sex determination. These findings suggest that a mode of action of perchlorate on adult reproductive phenotypes in vertebrates, including humans, such as altered fecundity and sex reversal or intersex gonads, may stem from early changes to germ cell development.


Assuntos
Células Germinativas/citologia , Gônadas/crescimento & desenvolvimento , Percloratos/efeitos adversos , Smegmamorpha/crescimento & desenvolvimento , Poluentes Químicos da Água/efeitos adversos , Animais , Feminino , Fertilização , Genótipo , Masculino , Meiose , Diferenciação Sexual , Fatores Sexuais , Fatores de Tempo
14.
ACS Med Chem Lett ; 6(9): 1019-24, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26396691

RESUMO

Tankyrase activity has been linked to the regulation of intracellular axin levels, which have been shown to be crucial for the Wnt pathway. Deregulated Wnt signaling is important for the genesis of many diseases including cancer. We describe herein the discovery and development of a new series of tankyrase inhibitors. These pyranopyridones are highly active in various cell-based assays. A fragment/structure based optimization strategy led to a compound with good pharmacokinetic properties that is suitable for in vivo studies and further development.

15.
Nat Commun ; 6: 7208, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26068415

RESUMO

Metabolites are small molecules involved in cellular metabolism, which can be detected in biological samples using metabolomic techniques. Here we present the results of genome-wide association and meta-analyses for variation in the blood serum levels of 129 metabolites as measured by the Biocrates metabolomic platform. In a discovery sample of 7,478 individuals of European descent, we find 4,068 genome- and metabolome-wide significant (Z-test, P < 1.09 × 10(-9)) associations between single-nucleotide polymorphisms (SNPs) and metabolites, involving 59 independent SNPs and 85 metabolites. Five of the fifty-nine independent SNPs are new for serum metabolite levels, and were followed-up for replication in an independent sample (N = 1,182). The novel SNPs are located in or near genes encoding metabolite transporter proteins or enzymes (SLC22A16, ARG1, AGPS and ACSL1) that have demonstrated biomedical or pharmaceutical importance. The further characterization of genetic influences on metabolic phenotypes is important for progress in biological and medical research.


Assuntos
Sangue/metabolismo , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos
16.
Bioconjug Chem ; 26(8): 1623-32, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26024553

RESUMO

Complex mixtures of DNA encoded small molecules may be readily interrogated via high-throughput sequencing. These DNA encoded libraries (DELs) are commonly used to discover molecules that interact with pharmaceutically relevant proteins. The chemical diversity displayed by the library is key to successful discovery of potent, novel, and drug-like chemical matter. The small molecule moieties of DELs are generally synthesized though a multistep process, and each chemical step is accomplished while it is simultaneously attached to an encoding DNA oligomer. Hence, library chemical diversity is often limited to DNA compatible synthetic reactions. Herein, protocols for 24 reactions are provided that have been optimized for high-throughput production of DELs. These protocols detail the multistep synthesis of benzimidazoles, imidazolidinones, quinazolinones, isoindolinones, thiazoles, and imidazopyridines. Additionally, protocols are provided for a diverse range of useful chemical reactions including BOC deprotection (under pH neutral conditions), carbamylation, and Sonogashira coupling. Last, step-by-step protocols for synthesizing functionalized DELs from trichloronitropyrimidine and trichloropyrimidine scaffolds are detailed.


Assuntos
DNA/química , Descoberta de Drogas/métodos , Bibliotecas de Moléculas Pequenas/síntese química , Humanos
17.
J Med Chem ; 58(3): 1358-71, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25565255

RESUMO

Negative allosteric modulators (NAMs) of metabotropic glutamate receptor 5 (mGlu5) have potential for the treatment of psychiatric diseases including depression, fragile X syndrome (FXS), anxiety, obsessive-compulsive disorders, and levodopa induced dyskinesia in Parkinson's disease. Herein we report the optimization of a weakly active screening hit 1 to the potent and selective compounds chloro-4-[1-(4-fluorophenyl)-2,5-dimethyl-1H-imidazol-4-ylethynyl]pyridine (basimglurant, 2) and 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP, 3). Compound 2 is active in a broad range of anxiety tests reaching the same efficacy but at a 10- to 100-fold lower dose compared to diazepam and is characterized by favorable DMPK properties in rat and monkey as well as an excellent preclinical safety profile and is currently in phase II clinical studies for the treatment of depression and fragile X syndrome. Analogue 3 is the first reported mGlu5 NAM with a long half-life in rodents and is therefore an ideal tool compound for chronic studies in mice and rats.


Assuntos
Depressão/tratamento farmacológico , Descoberta de Drogas , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Imidazóis/farmacologia , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Relação Estrutura-Atividade
18.
Gen Comp Endocrinol ; 210: 130-44, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25448260

RESUMO

Perchlorate, an environmental contaminant, disrupts normal functioning of the thyroid. We previously showed that perchlorate disrupts behavior and gonad development, and induces external morphological changes in a vertebrate model organism, the threespine stickleback. Whether perchlorate alters these phenotypes via a thyroid-mediated mechanism, and the extent to which the effects depend on dose, are unknown. To address these questions, we chronically exposed stickleback to control conditions and to three concentrations of perchlorate (10, 30 and 100ppm) at various developmental stages from fertilization to reproductive maturity. Adults chronically exposed to perchlorate had increased numbers of thyroid follicles and decreased numbers of thyrocytes. Surprisingly, T4 and T3 levels in larval, juvenile, and adult whole fish chronically exposed to perchlorate did not differ from controls, except at the lowest perchlorate dose, suggesting a non-monotonic dose response curve. We found no detectable abnormalities in external phenotype at any dose of perchlorate, indicating that the increased number of thyroid follicles compensated for the disruptive effects of these doses. In contrast to external morphology, gonadal development was altered substantially, with the highest dose of perchlorate causing the largest effects. Perchlorate increased the number both of early stage ovarian follicles in females and of advanced spermatogenic stages in males. Perchlorate also disrupted embryonic androgen levels. We conclude that chronic perchlorate exposure may not result in lasting adult gross morphological changes but can produce lasting modifications to gonads when compensation of T3 and T4 levels occurs by thyroid follicle hyperplasia. Perchlorate may therefore affect vertebrate development via both thyroidal and non-thyroidal mechanisms.


Assuntos
Androgênios/biossíntese , Percloratos/toxicidade , Reprodução/efeitos dos fármacos , Diferenciação Sexual/efeitos dos fármacos , Smegmamorpha/embriologia , Glândula Tireoide/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Embrião não Mamífero/efeitos dos fármacos , Feminino , Gônadas/citologia , Gônadas/embriologia , Gônadas/crescimento & desenvolvimento , Humanos , Masculino , Smegmamorpha/sangue , Glândula Tireoide/patologia , Hormônios Tireóideos/sangue
19.
Circ Cardiovasc Genet ; 8(1): 131-40, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25477429

RESUMO

BACKGROUND: The renin-angiotensin-aldosterone system (RAAS) is critical for regulation of blood pressure and fluid balance and influences cardiovascular remodeling. Dysregulation of the RAAS contributes to cardiovascular and renal morbidity. The genetic architecture of circulating RAAS components is incompletely understood. METHODS AND RESULTS: We meta-analyzed genome-wide association data for plasma renin activity (n=5275), plasma renin concentrations (n=8014), and circulating aldosterone (n=13289) from ≤4 population-based cohorts of European and European-American ancestry, and assessed replication of the top results in an independent sample (n=6487). Single-nucleotide polymorphisms (SNPs) in 2 independent loci displayed associations with plasma renin activity at genome-wide significance (P<5×10(-8)). A third locus was close to this threshold (rs4253311 in kallikrein B [KLKB1], P=5.5×10(-8)). Two of these loci replicated in an independent sample for both plasma renin and aldosterone concentrations (SNP rs5030062 in kininogen 1 [KNG1]: P=0.001 for plasma renin, P=0.024 for plasma aldosterone concentration; and rs4253311 with P<0.001 for both plasma renin and aldosterone concentration). SNPs in the NEBL gene reached genome-wide significance for plasma renin concentration in the discovery sample (top SNP rs3915911; P=8.81×10(-9)), but did not replicate (P=0.81). No locus reached genome-wide significance for aldosterone. SNPs rs5030062 and rs4253311 were not related to blood pressure or renal traits; in a companion study, variants in the kallikrein B locus were associated with B-type natriuretic peptide concentrations in blacks. CONCLUSIONS: We identified 2 genetic loci (kininogen 1 and kallikrein B) influencing key components of the RAAS, consistent with the close interrelation between the kallikrein-kinin system and the RAAS.


Assuntos
Doenças Cardiovasculares , Nefropatias , Cininogênios , Polimorfismo de Nucleotídeo Único , Pré-Calicreína , Sistema Renina-Angiotensina/genética , Renina/sangue , Aldosterona/sangue , Aldosterona/genética , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/genética , Estudo de Associação Genômica Ampla , Humanos , Nefropatias/sangue , Nefropatias/genética , Cininogênios/sangue , Cininogênios/genética , Pré-Calicreína/genética , Pré-Calicreína/metabolismo , Característica Quantitativa Herdável
20.
Bioorg Med Chem Lett ; 24(21): 4969-75, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25262541

RESUMO

The discovery of a novel series of pyrrolopyrazines as JAK inhibitors with comparable enzyme and cellular activity to tofacitinib is described. The series was identified using a scaffold hopping approach aided by structure based drug design using principles of intramolecular hydrogen bonding for conformational restriction and targeting specific pockets for modulating kinase activity.


Assuntos
Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/química , Pirróis/química , Desenho de Fármacos , Humanos , Janus Quinase 3/metabolismo , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Fosforilação , Piperidinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA