Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IMA Fungus ; 15(1): 10, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38582937

RESUMO

The Apiospora genus comprises filamentous fungi with promising potential, though its full capabilities remain undiscovered. In this study, we present the first genome assembly of an Apiospora arundinis isolate, demonstrating a highly complete and contiguous assembly estimated to 48.8 Mb, with an N99 of 3.0 Mb. Our analysis predicted a total of 15,725 genes, with functional annotations for 13,619 of them, revealing a fungus capable of producing very high amounts of carbohydrate-active enzymes (CAZymes) and secondary metabolites. Through transcriptomic analysis, we observed differential gene expression in response to varying growth media, with several genes related to carbohydrate metabolism showing significant upregulation when the fungus was cultivated on a hay-based medium. Finally, our metabolomic analysis unveiled a fungus capable of producing a diverse array of metabolites.

2.
PLoS Genet ; 20(1): e1011075, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38166117

RESUMO

Facultative heterochromatin marked by histone H3 lysine 27 trimethylation (H3K27me3) is an important regulatory layer involved in secondary metabolite (SM) gene silencing and crucial for fungal development in the genus Fusarium. While this histone mark is essential in some (e.g., the rice pathogen Fusarium fujikuroi), it appears dispensable in other fusaria. Here, we show that deletion of FpKMT6 is detrimental but not lethal in the plant pathogen Fusarium proliferatum, a member of the Fusarium fujikuroi species complex (FFSC). Loss of FpKmt6 results in aberrant growth, and expression of a large set of previously H3K27me3-silenced genes is accompanied by increased H3K27 acetylation (H3K27ac) and an altered H3K36me3 pattern. Next, H3K9me3 patterns are affected in Δfpkmt6, indicating crosstalk between both heterochromatic marks that became even more obvious in a strain deleted for FpKMT1 encoding the H3K9-specific histone methyltransferase. In Δfpkmt1, all H3K9me3 marks present in the wild-type strain are replaced by H3K27me3, a finding that may explain the subtle phenotype of the Δfpkmt1 strain which stands in marked contrast to other filamentous fungi. A large proportion of SM-encoding genes is allocated with H3K27me3 in the wild-type strain and loss of H3K27me3 results in elevated expression of 49% of them. Interestingly, genes involved in the biosynthesis of the phytohormones gibberellins (GA) are among the most upregulated genes in Δfpkmt6. Although several FFSC members harbor GA biosynthetic genes, its production is largely restricted to F. fujikuroi, possibly outlining the distinct lifestyles of these notorious plant pathogens. We show that H3K27me3 is involved in GA gene silencing in F. proliferatum and at least one additional FFSC member, and thus, may serve as a regulatory layer for gene silencing under non-favoring conditions.


Assuntos
Fusarium , Fusarium/genética , Histonas/genética , Histonas/metabolismo , Inativação Gênica
3.
IMA Fungus ; 14(1): 3, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726175

RESUMO

The Penicillia are known to produce a wide range natural products-some with devastating outcome for the agricultural industry and others with unexploited potential in different applications. However, a large-scale overview of the biosynthetic potential of different species has been lacking. In this study, we sequenced 93 Penicillium isolates and, together with eleven published genomes that hold similar assembly characteristics, we established a species phylogeny as well as defining a Penicillium pangenome. A total of 5612 genes were shared between ≥ 98 isolates corresponding to approximately half of the average number of genes a Penicillium genome holds. We further identified 15 lateral gene transfer events that have occurred in this collection of Penicillium isolates, which might have played an important role, such as niche adaption, in the evolution of these fungi. The comprehensive characterization of the genomic diversity in the Penicillium genus supersedes single-reference genomes, which do not necessarily capture the entire genetic variation.

4.
Genome Med ; 14(1): 47, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35505393

RESUMO

BACKGROUND: In early 2021, the SARS-CoV-2 lineage B.1.1.7 (Alpha variant) became dominant across large parts of the world. In Denmark, comprehensive and real-time test, contact-tracing, and sequencing efforts were applied to sustain epidemic control. Here, we use these data to investigate the transmissibility, introduction, and onward transmission of B.1.1.7 in Denmark. METHODS: We analyzed a comprehensive set of 60,178 SARS-CoV-2 genomes generated from high-throughput sequencing by the Danish COVID-19 Genome Consortium, representing 34% of all positive cases in the period 14 November 2020 to 7 February 2021. We calculated the transmissibility of B.1.1.7 relative to other lineages using Poisson regression. Including all 1976 high-quality B.1.1.7 genomes collected in the study period, we constructed a time-scaled phylogeny, which was coupled with detailed travel history and register data to outline the introduction and onward transmission of B.1.1.7 in Denmark. RESULTS: In a period with unchanged restrictions, we estimated an increased B.1.1.7 transmissibility of 58% (95% CI: [56%, 60%]) relative to other lineages. Epidemiological and phylogenetic analyses revealed that 37% of B.1.1.7 cases were related to the initial introduction in November 2020. The relative number of cases directly linked to introductions varied between 10 and 50% throughout the study period. CONCLUSIONS: Our findings corroborate early estimates of increased transmissibility of B.1.1.7. Both substantial early expansion when B.1.1.7 was still unmonitored and continuous foreign introductions contributed considerably to case numbers. Finally, our study highlights the benefit of balanced travel restrictions and self-isolation procedures coupled with comprehensive surveillance efforts, to sustain epidemic control in the face of emerging variants.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Dinamarca/epidemiologia , Humanos , Filogenia , SARS-CoV-2/genética
5.
Microb Genom ; 8(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35438621

RESUMO

During the last two decades, whole-genome sequencing has revolutionized genetic research in all kingdoms, including fungi. More than 1000 fungal genomes have been submitted to sequence databases, mostly obtained through second generation short-read DNA sequencing. As a result, highly fragmented genome drafts have typically been obtained. However, with the emergence of third generation long-read DNA sequencing, the assembly challenge can be overcome and highly contiguous assemblies obtained. Such attractive results, however, are extremely dependent on the ability to extract highly purified high molecular weight (HMW) DNA. Extraction of such DNA is currently a significant challenge for all species with cell walls, not least fungi. In this study, four isolates of filamentous ascomycetes (Apiospora pterospermum, Aspergillus sp. (subgen. Cremei), Aspergillus westerdijkiae, and Penicillium aurantiogriseum) were used to develop extraction and purification methods that result in HMW DNA suitable for third generation sequencing. We have tested and propose two straightforward extraction methods based on treatment with either a commercial kit or traditional phenol-chloroform extraction both in combination with a single commercial purification method that result in high quality HMW DNA from filamentous ascomycetes. Our results demonstrated that using these DNA extraction methods and coverage, above 75 x of our haploid filamentous ascomycete fungal genomes result in complete and contiguous assemblies.


Assuntos
Ascomicetos , Sequenciamento por Nanoporos , Ascomicetos/genética , DNA , Genoma Fúngico , Peso Molecular
6.
Genome Biol Evol ; 14(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-35104337

RESUMO

The phylogenetic relationship of the Arthrinium genus has changed throughout the years. For many years, the Arthrinium genus included the Apiospora genus as well. New evidence has now showed that these two genera in fact are phylogenetically different and belong to two different clades. Here, we present the first genome draft within the Arthrinium genus. This genome was sequenced using the MinION platform from Oxford Nanopore Technologies and the assembly was contiguous. The assembly comprises ten contigs totaling 39.8 Mb with an N50 length of 7.9. In the assembly, 11,602 genes were predicted whereof 10,784 were functionally annotated. A total of 37 rRNA genes were observed in the assembly and repeat elements spanning 7.39% of the genome were found. A total of 99 secondary metabolite gene clusters were predicted, showing a high potential of novel secondary metabolites. This genome sequence will not only be useful for further investigation of the Arthrinium clade, but also for discovery of novel secondary metabolite compounds that could be of high interest for the food, agricultural, or pharmaceutical industry.


Assuntos
Genoma , Nanoporos , Filogenia
7.
Microb Cell Fact ; 21(1): 9, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012550

RESUMO

The biosynthetic pathways for the fungal polyketides bikaverin and bostrycoidin, from Fusarium verticillioides and Fusarium solani respectively, were reconstructed and heterologously expressed in S. cerevisiae alongside seven different phosphopantetheinyl transferases (PPTases) from a variety of origins spanning bacterial, yeast and fungal origins. In order to gauge the efficiency of the interaction between the ACP-domains of the polyketide synthases (PKS) and PPTases, each were co-expressed individually and the resulting production of target polyketides were determined after 48 h of growth. In co-expression with both biosynthetic pathways, the PPTase from Fusarium verticillioides (FvPPT1) proved most efficient at producing both bikaverin and bostrycoidin, at 1.4 mg/L and 5.9 mg/L respectively. Furthermore, the remaining PPTases showed the ability to interact with both PKS's, except for a single PKS-PPTase combination. The results indicate that it is possible to boost the production of a target polyketide, simply by utilizing a more optimal PPTase partner, instead of the commonly used PPTases; NpgA, Gsp and Sfp, from Aspergillus nidulans, Brevibacillus brevis and Bacillus subtilis respectively.


Assuntos
Proteínas de Bactérias/metabolismo , Fusarium/enzimologia , Policetídeo Sintases/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Xantonas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Vias Biossintéticas , Clonagem Molecular , Fusarium/genética , Isoquinolinas/metabolismo , Modelos Moleculares , Policetídeo Sintases/química , Policetídeo Sintases/genética , Domínios Proteicos , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética
8.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066643

RESUMO

Through stepwise recreation of the biosynthetic gene cluster containing PKS3 from Fusarium solani, it was possible to produce the core scaffold compound of bostrycoidin, a red aza-anthraquinone pigment in Saccharomyces cerevisiae. This was achieved through sequential transformation associated recombination (TAR) cloning of FvPPT, fsr1, fsr2, and fsr3 into the pESC-vector system, utilizing the inducible bidirectional galactose promoter for heterologous expression in S. cerevisiae. The production of the core metabolite bostrycoidin was investigated through triplicate growth cultures for 1-4 days, where the maximum titer of bostrycoidin was achieved after 2 days of induction, yielding 2.2 mg/L.


Assuntos
Clonagem Molecular , Proteínas Fúngicas/genética , Fusarium/genética , Naftoquinonas/metabolismo , Policetídeo Sintases/genética , Proteínas Fúngicas/metabolismo , Isoquinolinas/metabolismo , Família Multigênica , Policetídeo Sintases/metabolismo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...