Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(8): 5283-5294, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354317

RESUMO

The research on the functional properties of medium- and high-entropy alloys (MEAs and HEAs) has been in the spotlight recently. Many significant discoveries have been made lately in hydrogen-based economy-related research where these alloys may be utilized in all of its key sectors: water electrolysis, hydrogen storage, and fuel cell applications. Despite the rapid development of MEAs and HEAs with the ability to reversibly absorb hydrogen, the research is limited to transition-metal-based alloys that crystallize in body-centered cubic solid solution or Laves phase structures. To date, no study has been devoted to the hydrogenation of rare-earth-element (REE)-based MEAs or HEAs, as well as to the alloys crystallizing in face-centered-cubic (FCC) or hexagonal-close-packed structures. Here, we elucidate the formation and hydrogen storage properties of REE-based ScYNdGd MEA. More specifically, we present the astounding stabilization of the single-phase FCC structure induced by the hydrogen absorption process. Moreover, the measured unprecedented high storage capacity of 2.5 H/M has been observed after hydrogenation conducted under mild conditions that proceeded without any phase transformation in the material. The studied MEA can be facilely activated, even after a long passivation time. The results of complementary measurements showed that the hydrogen desorption process proceeds in two steps. In the first, hydrogen is released from octahedral interstitial sites at relatively low temperatures. In the second, high-temperature process, it is associated with the desorption of hydrogen atoms stored in tetrahedral sites. The presented results may impact future research of a novel group of REE-based MEAs and HEAs with adaptable hydrogen storage properties and a broad scope of possible applications.

2.
Angew Chem Int Ed Engl ; 61(40): e202208016, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35972468

RESUMO

Ball milling is growing increasingly important as an alternative synthetic tool to prepare catalytic materials. It was recently observed that supported metal catalysts could be directly obtained upon ball milling from the coarse powders of metal and oxide support. Moreover, when two compatible metal sources are simultaneously subjected to the mechanochemical treatment, bimetallic nanoparticles are obtained. A systematic investigation was extended to different metals and supports to understand better the mechanisms involved in the comminution and alloying of metal nanoparticles. Based on this, a model describing the role of metal-support interactions in the synthesis was developed. The findings will be helpful for the future rational design of supported metal catalysts via dry ball milling.

3.
J Am Chem Soc ; 144(21): 9421-9433, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35604643

RESUMO

Aluminum oxides, oxyhydroxides, and hydroxides are important in different fields of application due to their many attractive properties. However, among these materials, tohdite (5Al2O3·H2O) is probably the least known because of the harsh conditions required for its synthesis. Herein, we report a straightforward methodology to synthesize tohdite nanopowders (particle diameter ∼13 nm, specific surface area ∼102 m2 g-1) via the mechanochemically induced dehydration of boehmite (γ-AlOOH). High tohdite content (about 80%) is achieved upon mild ball milling (400 rpm for 48 h in a planetary ball mill) without process control agents. The addition of AlF3 can promote the crystallization of tohdite by preventing the formation of the most stable α-Al2O3, resulting in the formation of almost phase-pure tohdite. The availability of easily accessible tohdite samples allowed comprehensive characterization by powder X-ray diffraction, total scattering analysis, solid-state NMR (1H and 27Al), N2-sorption, electron microscopy, and simultaneous thermal analysis (TG-DSC). Thermal stability evaluation of the samples combined with structural characterization evidenced a low-temperature transformation sequence: 5Al2O3·H2O → κ-Al2O3 → α-Al2O3. Surface characterization via DRIFTS, ATR-FTIR, D/H exchange experiments, pyridine-FTIR, and NH3-TPD provided further insights into the material properties.

4.
Inorg Chem ; 61(5): 2379-2390, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34807595

RESUMO

Transition-metal phosphates show a wide range of chemical compositions, variations of the valence states, and crystal structures. They are commercially used as solid-state catalysts, cathode materials in rechargeable batteries, or potential candidates for proton-exchange membranes in fuel cells. Here, we report on the successful ab initio structure determination of two novel titanium pyrophosphates, Ti(III)p and Ti(IV)p, from powder X-ray diffraction (PXRD) data. The low-symmetry space groups P21/c for Ti(III)p and P1̅ for Ti(IV)p required the combination of spectroscopic and diffraction techniques for structure determination. In Ti(III)p, trivalent titanium ions occupy the center of TiO6 polyhedra, coordinated by five pyrophosphate groups, one of them as a bidentate ligand. This secondary coordination causes the formation of one-dimensional six-membered ring channels with a diameter dmax of 3.93(2) Å, which is stabilized by NH4+ ions. Annealing Ti(III)p in inert atmospheres results in the formation of a new compound, denoted as Ti(IV)p. The structure of this compound shows a similar three-dimensional framework consisting of [PO4]3- tetrahedra and TiIV+O6 octahedra and an empty one-dimensional channel with a diameter dmax of 5.07(1) Å. The in situ PXRD of the transformation of Ti(III)p to Ti(IV)p reveals a two-step mechanism, i.e., the decomposition of NH4+ ions in a first step and subsequent structure relaxation. The specific proton conductivity and activation energy of the proton migration of Ti(III)p, governed by the Grotthus mechanism, belong to the highest and lowest, respectively, ever reported for this class of materials, which reveals its potential application in electrochemical devices like fuel cells and water electrolyzers in the intermediate temperature range.

5.
Rev Sci Instrum ; 92(11): 114102, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852549

RESUMO

In situ monitoring of mechanochemical reactions of soft matter is feasible by synchrotron diffraction experiments. However, so far, reactions of hard materials in existing polymer milling vessels failed due to insufficient energy input. In this study, we present the development of a suitable setup for in situ diffraction experiments at a synchrotron facility. The mechanochemical transformation of boehmite, γ-AlOOH, to corundum, α-Al2O3, was chosen as a model system. The modifications of the mill's clamping system and the vessels themselves were investigated separately. Starting from a commercially available Retsch MM 400 shaker mill, the influence of the geometrical adaptation of the setup on the milling process was investigated. Simply extending the specimen holder proved to be not sufficient because changes in mechanical forces need to be accounted for in the construction of optimized extensions. Milling vessels that are suitable for diffraction experiments and also guarantee the required energy input as well as mechanical stability were developed. The vessels consist of a steel body and modular polymer/steel rings as x-ray transparent windows. In addition, the vessels are equipped with a gas inlet and outlet system that is connectable to a gas analytics setup. Based on the respective modifications, the transformation of boehmite to corundum could be observed in an optimized setup.

6.
Chemistry ; 27(49): 12451-12452, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34263488

RESUMO

Invited for the cover of this issue is Claudia Weidenthaler and co-workers at the Max-Planck-Institut für Kohlenforschung, Shenzhen University and Deutsches Elektronen Synchrotron. The image depicts the X-ray diffraction results showing the formation of ZnS and the subsequent phase transition from the hexagonal to the cubic modification. Read the full text of the article at 10.1002/chem.202101260.

7.
Chemistry ; 27(49): 12558-12565, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062026

RESUMO

Mechanochemistry, as a synthesis tool for inorganic materials, became an ever-growing field in material chemistry. The direct energy transfer by collision of the educts with the milling media gives the possibility to design environmental-friendly reactions. Nevertheless, the underlying process of energy transfer and hence the kinetics of mechanosynthesis remain unclear. Herein, we present in situ synchrotron X-ray diffraction studies coupled with pressure measurements performed during the formation of ZnS and the subsequent phase transition (PT) from the hexagonal to the cubic modification. Milling Zn and S8 results in the sublimation of S8 , observed by a sudden pressure increase. Simultaneously, the hexagonal metastable ZnS-modification (wurtzite) forms. Via detection of the pressure maximum, the exact start of the wurtzite formation can be determined. Immediately after the formation of wurtzite, the structural PT to the thermodynamic stable cubic modification sphalerite takes place. This PT can be described by the Prout-Tompkins equation for autocatalytic reactions, similar to thermally induced PT in sulfur vapor at high temperatures (T>1133 K). The increase in the reactivity of the wurtzite formation is explained by the reaction in sulfur vapor and the induction of defect structures by the collisions with the milling media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...