Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Immunol ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836816

RESUMO

Alveolar macrophages (AMs) and recruited monocyte-derived macrophages (MDMs) mediate early lung immune responses to Mycobacterium tuberculosis. Differences in the response of these distinct cell types are poorly understood and may provide insight into mechanisms of tuberculosis pathogenesis. The objective of this study was to determine whether M. tuberculosis induces unique and essential antimicrobial pathways in human AMs compared with MDMs. Using paired human AMs and 5-d MCSF-derived MDMs from six healthy volunteers, we infected cells with M. tuberculosis H37Rv for 6 h, isolated RNA, and analyzed transcriptomic profiles with RNA sequencing. We found 681 genes that were M. tuberculosis dependent in AMs compared with MDMs and 4538 that were M. tuberculosis dependent in MDMs, but not AMs (false discovery rate [FDR] < 0.05). Using hypergeometric enrichment of DEGs in Broad Hallmark gene sets, we found that type I and II IFN Response were the only gene sets selectively induced in M. tuberculosis-infected AM (FDR < 0.05). In contrast, MYC targets, unfolded protein response and MTORC1 signaling, were selectively enriched in MDMs (FDR < 0.05). IFNA1, IFNA8, IFNE, and IFNL1 were specifically and highly upregulated in AMs compared with MDMs at baseline and/or after M. tuberculosis infection. IFNA8 modulated M. tuberculosis-induced proinflammatory cytokines and, compared with other IFNs, stimulated unique transcriptomes. Several DNA sensors and IFN regulatory factors had higher expression at baseline and/or after M. tuberculosis infection in AMs compared with MDMs. These findings demonstrate that M. tuberculosis infection induced unique transcriptional responses in human AMs compared with MDMs, including upregulation of the IFN response pathway and specific DNA sensors.

2.
Front Immunol ; 15: 1359178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515745

RESUMO

Introduction: The heterogeneity of outcomes after Mycobacterium tuberculosis (Mtb) exposure is a conundrum associated with millennia of host-pathogen co-evolution. We hypothesized that human myeloid cells contain genetically encoded, Mtb-specific responses that regulate critical steps in tuberculosis (TB) pathogenesis. Methods: We mapped genome-wide expression quantitative trait loci (eQTLs) in Mtb-infected monocytes with RNAseq from 80 Ugandan household contacts of pulmonary TB cases to identify monocyte-specific, Mtb-dependent eQTLs and their association with cytokine expression and clinical resistance to tuberculin skin test (TST) and interferon-γ release assay (IGRA) conversion. Results: cis-eQTLs (n=1,567) were identified in Mtb-infected monocytes (FDR<0.01), including 29 eQTLs in 16 genes which were Mtb-dependent (significant for Mtb:genotype interaction [FDR<0.1], but not classified as eQTL in uninfected condition [FDR≥0.01]). A subset of eQTLs were associated with Mtb-induced cytokine expression (n=8) and/or clinical resistance to TST/IGRA conversion (n=1). Expression of BMP6, an Mtb-dependent eQTL gene, was associated with IFNB1 induction in Mtb-infected and DNA ligand-induced cells. Network and enrichment analyses identified fatty acid metabolism as a pathway associated with eQTL genes. Discussion: These findings suggest that monocyte genes contain Mtb-dependent eQTLs, including a subset associated with cytokine expression and/or clinical resistance to TST/IGRA conversion, providing insight into immunogenetic pathways regulating susceptibility to Mtb infection and TB pathogenesis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/metabolismo , Monócitos/metabolismo , Locos de Características Quantitativas , Tuberculose/genética , Citocinas/metabolismo
3.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38464296

RESUMO

Mycobacterium tuberculosis (Mtb) exposure leads to a range of outcomes including clearance, latent TB infection (LTBI), and pulmonary tuberculosis (TB). Some heavily exposed individuals resist tuberculin skin test (TST) and interferon gamma release assay (IGRA) conversion (RSTR), which suggests that they employ IFNγ-independent mechanisms of Mtb control. Here, we compare monocyte epigenetic profiles of RSTR and LTBI from a Ugandan household contact cohort. Chromatin accessibility did not differ between uninfected RSTR and LTBI monocytes. In contrast, methylation significantly differed at 174 CpG sites and across 63 genomic regions. Consistent with previous transcriptional findings in this cohort, differential methylation was enriched in lipid and cholesterol associated pathways including in the genes APOC3, KCNQ1, and PLA2G3. In addition, methylation was enriched in Hippo signaling, which is associated with cholesterol homeostasis and includes CIT and SHANK2. Lipid export and Hippo signaling pathways were also associated with gene expression in response to Mtb in RSTR as well as IFN stimulation in monocyte-derived macrophages (MDMs) from an independent healthy donor cohort. Moreover, serum-derived HDL from RSTR had elevated ABCA1-mediated cholesterol efflux capacity (CEC) compared to LTBI. Our findings suggest that resistance to TST/IGRA conversion is linked to regulation of lipid accumulation in monocytes, which could facilitate early Mtb clearance among RSTR subjects through IFNγ-independent mechanisms.

4.
AIDS ; 37(15): 2287-2296, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37696247

RESUMO

OBJECTIVE: To determine whether Mycobacterium tuberculosis (Mtb)-induced monocyte transcriptional responses differ in people with HIV (PWH) who do (RSTR) or do not (LTBI) resist tuberculin skin test/interferon-γ (IFN-γ) release assay (TST/IGRA) conversion after exposure. DESIGN: We compared ex-vivo Mtb-induced monocyte transcriptional responses in a Ugandan tuberculosis (TB) household contact study of RSTR and LTBI individuals among PWH. METHODS: Monocytes were isolated from peripheral blood mononuclear cells from 19 household contacts of pulmonary TB patients, and their transcriptional profiles were measured with RNA-Seq after a 6 h infection with Mtb (H37Rv) or media. Differentially expressed genes (DEGs) were identified by a linear mixed effects model and pathways by gene set enrichment analysis that compared RSTR and LTBI phenotypes with and without Mtb stimulation. RESULTS: Among PWH, we identified 8341 DEGs that were dependent on Mtb stimulation [false discovery rate (FDR) <0.01]. Of these, 350 were not significant (FDR >0.2) in individuals without HIV. Additionally, we found 26 genes that were differentially expressed between RSTR and LTBI monocytes in PWH, including 20 which were Mtb-dependent (FDR <0.2). In unstimulated monocytes, several gene sets [TGF-ß signaling, TNF-α signaling via NF-κB, NOTCH signaling, coagulation, and epithelial mesenchymal transition (EMT)] were enriched in RSTR relative to LTBI monocytes (FDR <0.1). These patterns were not observed in individuals without HIV. CONCLUSION: RSTR monocytes in PWH show different gene expressions in response to Mtb infection when compared with those with LTBI and RSTR without HIV. These differential expression patterns are enriched in inflammatory pathways.


Assuntos
Infecções por HIV , Tuberculose Latente , Mycobacterium tuberculosis , Humanos , Testes de Liberação de Interferon-gama , Teste Tuberculínico , Monócitos , Tuberculose Latente/diagnóstico , Leucócitos Mononucleares , Infecções por HIV/complicações
5.
medRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693490

RESUMO

The heterogeneity of outcomes after Mycobacterium tuberculosis (Mtb) exposure is a conundrum associated with millennia of host-pathogen co-evolution. We hypothesized that human myeloid cells contain genetically encoded, Mtb-specific responses that regulate critical steps in tuberculosis (TB) pathogenesis. We mapped genome-wide expression quantitative trait loci (eQTLs) in Mtb-infected monocytes with RNAseq from 80 Ugandan household contacts of pulmonary TB cases to identify monocyte-specific, Mtb-dependent eQTLs and their association with cytokine expression and clinical resistance to tuberculin skin test (TST) and interferon-γ release assay (IGRA) conversion. cis-eQTLs (n=1,567) were identified in Mtb-infected monocytes (FDR<0.01), including 29 eQTLs in 16 genes which were Mtb-dependent (significant for Mtb:genotype interaction [FDR<0.1], but not classified as eQTL in media condition [FDR≥0.01]). A subset of eQTLs were associated with Mtb-induced cytokine expression (n=8) and/or clinical resistance to TST/IGRA conversion (n=1). Expression of BMP6, an Mtb-dependent eQTL gene, was associated with IFNB1 induction in Mtb-infected and DNA ligand-induced cells. Network and enrichment analyses identified fatty acid metabolism as a pathway associated with eQTL genes. These findings suggest that monocyte genes contain Mtb-dependent eQTLs, including a subset associated with cytokine expression and/or clinical resistance to TST/IGRA conversion, providing insight into immunogenetic pathways regulating susceptibility to Mtb infection and TB pathogenesis.

6.
PLoS One ; 18(4): e0284498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37058459

RESUMO

BACKGROUND: A mechanistic understanding of uncommon immune outcomes such as resistance to infection has led to the development of novel therapies. Using gene level analytic methods, we previously found distinct monocyte transcriptional responses associated with resistance to Mycobacterium tuberculosis (Mtb) infection defined as persistently negative tuberculin skin test (TST) and interferon gamma release assay (IGRA) reactivity among highly exposed contacts (RSTR phenotype). OBJECTIVE: Using transcript isoform analyses, we aimed to identify novel RSTR-associated genes hypothesizing that previous gene-level differential expression analysis obscures isoform-specific differences that contribute to phenotype. MATERIALS AND METHODS: Monocytes from 49 RSTR versus 52 subjects with latent Mtb infection (LTBI) were infected with M. tuberculosis (H37Rv) or left unstimulated (media) prior to RNA isolation and sequencing. RSTR-associated gene expression was then identified using differential transcript isoform analysis. RESULTS: We identified 81 differentially expressed transcripts (DETs) in 70 genes (FDR <0.05) comparing RSTR and LTBI phenotypes with the majority (n = 79 DETs) identified under Mtb-stimulated conditions. Seventeen of these genes were previously identified with gene-level bulk RNAseq analyses including genes in the IFNγ response that had increased expression among LTBI subjects, findings consistent with a clinical phenotype based on IGRA reactivity. Among the subset of 23 genes with positive differential expression among Mtb-infected RSTR monocytes, 13 were not previously identified. These novel DET genes included PDE4A and ZEB2, which each had multiple DETs with higher expression among RSTR subjects, and ACSL4 and GAPDH that each had a single transcript isoform associated with RSTR. CONCLUSION AND LIMITATIONS: Transcript isoform-specific analyses identify transcriptional associations, such as those associated with resistance to TST/IGRA conversion, that are obscured when using gene-level approaches. These findings should be validated with additional RSTR cohorts and whether the newly identified candidate resistance genes directly influence the monocyte Mtb response requires functional study.


Assuntos
Infecção Latente , Tuberculose Latente , Mycobacterium tuberculosis , Humanos , Testes de Liberação de Interferon-gama/métodos , Teste Tuberculínico/métodos , Tuberculose Latente/diagnóstico , Tuberculose Latente/genética , Tuberculose Latente/complicações , Fenótipo
7.
Front Immunol ; 13: 1016038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263044

RESUMO

Immunological mechanisms of susceptibility to nontuberculous mycobacterial (NTM) disease are poorly understood. To understand NTM pathogenesis, we evaluated innate and antigen-specific adaptive immune responses to Mycobacterium avium complex (MAC) in asymptomatic individuals with a previous history of MAC lung disease (MACDZ). We hypothesized that Mav-specific immune responses are associated with susceptibility to MAC lung disease. We measured MAC-, NTM-, or MAC/Mtb-specific T-cell responses by cytokine production, expression of surface markers, and analysis of global gene expression in 27 MACDZ individuals and 32 healthy controls. We also analyzed global gene expression in Mycobacterium avium-infected and uninfected peripheral blood monocytes from 17 MACDZ and 17 healthy controls. We were unable to detect increased T-cell responses against MAC-specific reagents in MACDZ compared to controls, while the responses to non-mycobacteria derived antigens were preserved. MACDZ individuals had a lower frequency of Th1 and Th1* T-cell populations. In addition, MACDZ subjects had lower transcriptional responses in PBMCs stimulated with a mycobacterial peptide pool (MTB300). By contrast, global gene expression analysis demonstrated upregulation of proinflammatory pathways in uninfected and M. avium-infected monocytes, i.e. a hyperinflammatory in vitro response, derived from MACDZ subjects compared to controls. Together, these data suggest a novel immunologic defect which underlies MAC pathogenesis and includes concurrent innate and adaptive dysregulation which persists years after completion of treatment.


Assuntos
Pneumopatias , Infecção por Mycobacterium avium-intracellulare , Humanos , Complexo Mycobacterium avium , Monócitos , Pneumopatias/microbiologia , Linfócitos T , Citocinas
8.
mSphere ; 7(3): e0015922, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35695527

RESUMO

Heavy exposure to Mycobacterium tuberculosis, the etiologic agent of tuberculosis (TB) and among the top infectious killers worldwide, results in infection that is cleared, contained, or progresses to disease. Some heavily exposed tuberculosis contacts show no evidence of infection using the tuberculin skin test (TST) and interferon gamma release assay (IGRA); yet the mechanisms underlying this "resister" (RSTR) phenotype are unclear. To identify transcriptional responses that distinguish RSTR monocytes, we performed transcriptome sequencing (RNA-seq) on monocytes isolated from heavily exposed household contacts in Uganda and gold miners in South Africa after ex vivo M. tuberculosis infection. Gene set enrichment analysis (GSEA) revealed several gene pathways that were consistently enriched in response to M. tuberculosis among RSTR subjects compared to controls with positive TST/IGRA testing (latent TB infection [LTBI]) across Uganda and South Africa. The most significantly enriched gene set in which expression was increased in RSTR relative to LTBI M. tuberculosis-infected monocytes was the tumor necrosis factor alpha (TNF-α) signaling pathway whose core enrichment (leading edge) substantially overlapped across RSTR populations. These leading-edge genes included candidate resistance genes (ABCA1 and DUSP2) with significantly increased expression among Uganda RSTRs (false-discovery rate [FDR], <0.1). The distinct monocyte transcriptional response to M. tuberculosis among RSTR subjects, including increased expression of the TNF signaling pathway, highlights genes and inflammatory pathways that may mediate resistance to TST/IGRA conversion and provides therapeutic targets to enhance host restriction of M. tuberculosis intracellular infection. IMPORTANCE After heavy M. tuberculosis exposure, the events that determine why some individuals resist TST/IGRA conversion are poorly defined. Enrichment of the TNF signaling gene set among RSTR monocytes from multiple distinct cohorts suggests an important role for the monocyte TNF response in determining this alternative immune outcome. These TNF responses to M. tuberculosis among RSTRs may contribute to antimicrobial programs that result in early clearance or the priming of alternative (gamma interferon-independent) cellular responses.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Humanos , Testes de Liberação de Interferon-gama/métodos , Tuberculose Latente/diagnóstico , Monócitos , Teste Tuberculínico/métodos , Tuberculose/diagnóstico
9.
J Clin Invest ; 131(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34111032

RESUMO

After extensive exposure to Mycobacterium tuberculosis (Mtb), most individuals acquire latent Mtb infection (LTBI) defined by a positive tuberculin skin test (TST) or interferon-γ release assay (IGRA). To identify mechanisms of resistance to Mtb infection, we compared transcriptional profiles from highly exposed contacts who resist TST/IGRA conversion (resisters, RSTRs) and controls with LTBI using RNAseq. Gene sets related to carbon metabolism and free fatty acid (FFA) transcriptional responses enriched across 2 independent cohorts suggesting RSTR and LTBI monocytes have distinct activation states. We compared intracellular Mtb replication in macrophages treated with FFAs and found that palmitic acid (PA), but not oleic acid (OA), enhanced Mtb intracellular growth. This PA activity correlated with its inhibition of proinflammatory cytokines in Mtb-infected cells. Mtb growth restriction in PA-treated macrophages was restored by activation of AMP kinase (AMPK), a central host metabolic regulator known to be inhibited by PA. Finally, we genotyped AMPK variants and found 7 SNPs in PRKAG2, which encodes the AMPK-γ subunit, that strongly associated with RSTR status. Taken together, RSTR and LTBI phenotypes are distinguished by FFA transcriptional programs and by genetic variation in a central metabolic regulator, which suggests immunometabolic pathways regulate TST/IGRA conversion.


Assuntos
Proteínas Quinases Ativadas por AMP , Testes de Liberação de Interferon-gama , Tuberculose Latente , Monócitos/metabolismo , Mycobacterium tuberculosis/metabolismo , Polimorfismo de Nucleotídeo Único , Transcrição Gênica , Teste Tuberculínico , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Humanos , Tuberculose Latente/diagnóstico , Tuberculose Latente/metabolismo , Masculino , Pessoa de Meia-Idade , Células U937
10.
Tuberculosis (Edinb) ; 127: 102062, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33639591

RESUMO

RATIONALE: Host-directed therapeutics for Mycobacterium tuberculosis (Mtb) offer potential strategies for combatting antibiotic resistance and for killing non-replicating bacilli. Phenylbutyrate, a partially selective histone-deacetylase (HDAC) inhibitor, was previously shown to control Mtb growth and alter macrophage inflammatory pathways at 2-4 mM concentrations. OBJECTIVE: To identify a more potent and selective HDAC inhibitor that modulates macrophage responses to mycobacteria and has direct antibacterial effects against Mtb. METHODS: We used cellular approaches to characterize the role of pharmacologic inhibition of HDAC3 on Mtb growth and Mtb-induced peripheral and alveolar macrophage immune functions. MEASUREMENTS AND MAIN RESULTS: RGFP966, an HDAC3 inhibitor, controlled Mtb, BCG and M. avium growth directly in broth culture and in human peripheral blood monocyte-derived and alveolar macrophages with an MIC50 of approximately 5-10 µM. In contrast, RGFP966 did not inhibit growth of several other intracellular and extracellular bacteria. We also found that RGFP966 modulated macrophage pro-inflammatory cytokine secretion in response to Mtb infection with decreased IL6 and TNF secretion. CONCLUSIONS: We identified a potent and selective small molecule inhibitor of HDAC3 with direct antimicrobial activity against Mtb and modulation of macrophage signaling pathways.


Assuntos
Acrilamidas/farmacologia , Antituberculosos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Tuberculose Pulmonar/tratamento farmacológico , Adolescente , Adulto , Células Cultivadas , Citocinas/metabolismo , Feminino , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Macrófagos Alveolares/enzimologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/imunologia , Transdução de Sinais , Tuberculose Pulmonar/enzimologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Adulto Jovem
11.
J Infect Dis ; 221(6): 989-999, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31665359

RESUMO

Novel antimicrobials for treatment of Mycobacterium tuberculosis are needed. We hypothesized that nicotinamide (NAM) and nicotinic acid (NA) modulate macrophage function to restrict M. tuberculosis replication in addition to their direct antimicrobial properties. Both compounds had modest activity in 7H9 broth, but only NAM inhibited replication in macrophages. Surprisingly, in macrophages NAM and the related compound pyrazinamide restricted growth of bacille Calmette-Guérin but not wild-type Mycobacterium bovis, which both lack a functional nicotinamidase/pyrazinamidase (PncA) rendering each strain resistant to these drugs in broth culture. Interestingly, NAM was not active in macrophages infected with a virulent M. tuberculosis mutant encoding a deletion in pncA. We conclude that the differential activity of NAM and nicotinic acid on infected macrophages suggests host-specific NAM targets rather than PncA-dependent direct antimicrobial properties. These activities are sufficient to restrict attenuated BCG, but not virulent wild-type M. bovis or M. tuberculosis.


Assuntos
Macrófagos/microbiologia , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Niacinamida/farmacologia , Complexo Vitamínico B/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Citocinas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Niacina/farmacologia , Niacinamida/administração & dosagem , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Células U937
12.
Am J Respir Crit Care Med ; 196(4): 502-511, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28463648

RESUMO

RATIONALE: The molecular mechanisms that regulate tuberculosis susceptibility and bacillus Calmette-Guérin (BCG)-induced immunity are mostly unknown. However, induction of the adaptive immune response is a critical step in host control of Mycobacterium tuberculosis. Toll-interacting protein (TOLLIP) is a ubiquitin-binding protein that regulates innate immune responses, including Toll-like receptor signaling, which initiate adaptive immunity. TOLLIP variation is associated with susceptibility to tuberculosis, but the mechanism by which it regulates tuberculosis immunity is poorly understood. OBJECTIVES: To identify functional TOLLIP variants and evaluate the role of TOLLIP variation on innate and adaptive immune responses to mycobacteria and susceptibility to tuberculosis. METHODS: We used human cellular immunology approaches to characterize the role of a functional TOLLIP variant on monocyte mRNA expression and M. tuberculosis-induced monocyte immune functions. We also examined the association of TOLLIP variation with BCG-induced T-cell responses and susceptibility to latent tuberculosis infection. MEASUREMENTS AND MAIN RESULTS: We identified a functional TOLLIP promoter region single-nucleotide polymorphism, rs5743854, which was associated with decreased TOLLIP mRNA expression in infant monocytes. After M. tuberculosis infection, TOLLIP-deficient monocytes demonstrated increased IL-6, increased nitrite, and decreased bacterial replication. The TOLLIP-deficiency G/G genotype was associated with decreased BCG-specific IL-2+ CD4+ T-cell frequency and proliferation. This genotype was also associated with increased susceptibility to latent tuberculosis infection. CONCLUSIONS: TOLLIP deficiency is associated with decreased BCG-specific T-cell responses and increased susceptibility to tuberculosis. We hypothesize that the heightened antibacterial monocyte responses after vaccination of TOLLIP-deficient infants are responsible for decreased BCG-specific T-cell responses. Activating TOLLIP may provide a novel adjuvant strategy for BCG vaccination.


Assuntos
Imunidade Inata/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Mycobacterium bovis/imunologia , Tuberculose/imunologia , Humanos , Imunidade Inata/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mycobacterium bovis/genética , Polimorfismo de Nucleotídeo Único/genética , Polimorfismo de Nucleotídeo Único/imunologia , Estudos Prospectivos , Tuberculose/genética
13.
Tuberculosis (Edinb) ; 104: 38-45, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28454648

RESUMO

Humans exposed to Mycobacterium tuberculosis (Mtb) have variable susceptibility to tuberculosis (TB) and its outcomes. Siglec-5 and Siglec-14 are members of the sialic-acid binding lectin family that regulate immune responses to pathogens through inhibitory (Siglec-5) and activating (Siglec-14) domains. The SIGLEC14 coding sequence is deleted in a high proportion of individuals, placing a SIGLEC5-like gene under the expression of the SIGLEC14 promoter (the SIGLEC14 null allele) and causing expression of a Siglec-5 like protein in monocytes and macrophages. We hypothesized that the SIGLEC14 null allele was associated with Mtb replication in monocytes, T-cell responses to the BCG vaccine, and clinical susceptibility to TB. The SIGLEC14 null allele was associated with protection from TB meningitis in Vietnamese adults but not with pediatric TB in South Africa. The null allele was associated with increased IL-2 and IL-17 production following ex-vivo BCG stimulation of blood from 10 week-old South African infants vaccinated with BCG at birth. Mtb replication was increased in THP-1 cells overexpressing either Siglec-5 or Siglec-14 relative to controls. To our knowledge, this is the first study to demonstrate an association between SIGLEC expression and clinical TB, Mtb replication, or BCG-specific T-cell cytokines.


Assuntos
Vacina BCG/administração & dosagem , Lectinas/genética , Mycobacterium tuberculosis/imunologia , Receptores de Superfície Celular/genética , Tuberculose Meníngea/genética , Tuberculose Meníngea/prevenção & controle , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/prevenção & controle , Vacinação , Imunidade Adaptativa , Adolescente , Adulto , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/imunologia , Vacina BCG/imunologia , Estudos de Casos e Controles , Pré-Escolar , Citocinas/imunologia , Feminino , Frequência do Gene , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno , Humanos , Lactente , Recém-Nascido , Lectinas/imunologia , Masculino , Monócitos/imunologia , Monócitos/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fenótipo , Estudos Prospectivos , Receptores de Superfície Celular/imunologia , África do Sul , Linfócitos T/imunologia , Linfócitos T/microbiologia , Células THP-1 , Fatores de Tempo , Resultado do Tratamento , Tuberculose Meníngea/imunologia , Tuberculose Meníngea/microbiologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Vietnã
14.
J Infect Dis ; 213(7): 1189-97, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26610735

RESUMO

Leprosy is a chronic disease characterized by skin and peripheral nerve pathology and immune responses that fail to control Mycobacterium leprae. Toll-interacting protein (TOLLIP) regulates Toll-like receptor (TLR) and interleukin 1 receptor (IL-1R) signaling against mycobacteria. We analyzed messenger RNA (mRNA) expression of candidate immune genes in skin biopsy specimens from 85 individuals with leprosy. TOLLIP mRNA was highly and specifically correlated with IL-1R antagonist (IL-1Ra). In a case-control gene-association study with 477 cases and 1021 controls in Nepal, TOLLIP single-nucleotide polymorphism rs3793964 TT genotype was associated with increased susceptibility to leprosy (recessive, P = 1.4 × 10(-3)) and with increased skin expression of TOLLIP and IL-1Ra. Stimulation of TOLLIP-deficient monocytes with M. leprae produced significantly less IL-1Ra (P < .001), compared with control. These data suggest that M. leprae upregulates IL-1Ra by a TOLLIP-dependent mechanism. Inhibition of TOLLIP may decrease an individual's susceptibility to leprosy and offer a novel therapeutic target for IL-1-dependent diseases.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Predisposição Genética para Doença , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Hanseníase/genética , Polimorfismo de Nucleotídeo Único , Adulto , Estudos de Casos e Controles , Genótipo , Humanos , Proteína Antagonista do Receptor de Interleucina 1/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Hanseníase/epidemiologia , Nepal , Estudos Prospectivos , Pele/metabolismo
15.
PLoS Negl Trop Dis ; 8(11): e3263, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25412496

RESUMO

BACKGROUND: Leprosy is characterized by polar clinical, histologic and immunological presentations. Previous immunologic studies of leprosy polarity were limited by the repertoire of cytokines known at the time. METHODOLOGY: We used a candidate gene approach to measure mRNA levels in skin biopsies from leprosy lesions. mRNA from 24 chemokines and cytokines, and 6 immune cell type markers were measured from 85 Nepalese leprosy subjects. Selected findings were confirmed with immunohistochemistry. PRINCIPAL RESULTS: Expression of three soluble mediators (CCL18, CCL17 and IL-10) and one macrophage cell type marker (CD14) was significantly elevated in lepromatous (CCL18, IL-10 and CD14) or tuberculoid (CCL17) lesions. Higher CCL18 protein expression by immunohistochemistry and a trend in increased serum CCL18 in lepromatous lesions was observed. No cytokines were associated with erythema nodosum leprosum or Type I reversal reaction following multiple comparison correction. Hierarchical clustering suggested that CCL18 was correlated with cell markers CD209 and CD14, while neither CCL17 nor CCL18 were highly correlated with classical TH1 and TH2 cytokines. CONCLUSIONS: Our findings suggest that CCL17 and CCL18 dermal expression is associated with leprosy polarity.


Assuntos
Quimiocina CCL17/genética , Quimiocinas CC/genética , Eritema Nodoso/imunologia , Hanseníase Virchowiana/imunologia , Hanseníase Tuberculoide/imunologia , Adulto , Biomarcadores/análise , Quimiocina CCL17/metabolismo , Quimiocinas CC/metabolismo , Análise por Conglomerados , Eritema Nodoso/patologia , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Hanseníase Virchowiana/patologia , Hanseníase Tuberculoide/patologia , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Pele/patologia , Adulto Jovem
16.
Vaccine ; 24(49-50): 7214-25, 2006 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-16860908

RESUMO

We have characterized protein antigens after quantitative dissociation from aluminum hydroxide adjuvant. Bovine serum albumin (BSA) and a multi-antigen vaccine for Group A Streptococcus (GrAS Vaccine) were formulated on aluminum hydroxide, stored for > or =10 days then eluted with a 48-h treatment at 4 degrees C with 0.85% H(3)PO(4) plus 4M guanidine HCl (GnHCl). BSA is recovered from adjuvant at 92+/-2%. GrAS antigens are equally recovered from GrAS Vaccine (95+/-11% of total protein expected using multiple lots stored for up to 12 months). Recovery after elution is similar when determined by RP-HPLC, SEC-HPLC, UV absorbance, or Bradford methods. Eluted antigens are structurally and functionally intact as judged relative to both treated and untreated antigen controls by SDS-PAGE, RP-HPLC, SEC-HPLC, and after desalting by circular dichroism, bis-ANS binding, and antigenicity determined by ELISA. When formulated and stored for a few weeks, BSA has more dimer (31+/-5%) relative to the elution control (9% dimer) as detected by SEC-HPLC, suggesting that BSA microaggregation is promoted on aluminum. Antigens eluted from very aged GrAS Vaccine (>12 months) show marked changes by RP-HPLC. Structural changes in the antigens under elution conditions were evaluated using bis-ANS, a fluorescent probe of protein structure. Binding of bis-ANS increases fluorescence approximately 100-fold and is significantly diminished with increasing GnHCl concentrations indicating a progressive denaturing of the proteins. At 4M GnHCl (with or without 0.85% H(3)PO(4)) the GrAS antigens are fully denatured and BSA is partially denatured. Interestingly, the addition of 0.85% H(3)PO(4) increases bis-ANS binding on GrAS antigens and reduces the denaturing of GrAS antigens and BSA by chaotropes. Desalting or diluting the eluted antigens results in renaturing of the proteins as judged by bis-ANS fluorescence, circular dichroism and antigenicity testing. The elution method provides a novel approach for high recovery and characterization of GrAS Vaccine antigens and may be applicable to the study of many aluminum hydroxide-bound vaccines.


Assuntos
Adjuvantes Imunológicos/química , Hidróxido de Alumínio/química , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Fenômenos Químicos , Química Farmacêutica , Físico-Química , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Estabilidade de Medicamentos , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Corantes Fluorescentes , Desnaturação Proteica , Proteínas Recombinantes/imunologia , Soroalbumina Bovina/química , Espectrofotometria Ultravioleta , Streptococcus pyogenes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...