Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
EJNMMI Res ; 14(1): 32, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536511

RESUMO

BACKGROUND: Standard measures of response such as Response Evaluation Criteria in Solid Tumors are ineffective for bone lesions, often making breast cancer patients that have bone-dominant metastases ineligible for clinical trials with potentially helpful therapies. In this study we prospectively evaluated the test-retest uptake variability of 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) in a cohort of breast cancer patients with bone-dominant metastases to determine response criteria. The thresholds for 95% specificity of change versus no-change were then applied to a second cohort of breast cancer patients with bone-dominant metastases. METHODS: For this study, nine patients with 38 bone lesions were imaged with 18F-FDG in the same calibrated scanner twice within 14 days. Tumor uptake was quantified by the most commonly used PET parameter, the maximum tumor voxel normalized by dose and body weight (SUVmax) and also by the mean of a 1-cc maximal uptake volume normalized by dose and lean-body-mass (SULpeak). The asymmetric repeatability coefficients with confidence intervals for SUVmax and SULpeak were used to determine the limits of 18F-FDG uptake variability. A second cohort of 28 breast cancer patients with bone-dominant metastases that had 146 metastatic bone lesions was imaged with 18F-FDG before and after standard-of-care therapy for response assessment. RESULTS: The mean relative difference of SUVmax and SULpeak in 38 bone tumors of the first cohort were 4.3% and 6.7%. The upper and lower asymmetric limits of the repeatability coefficient were 19.4% and - 16.3% for SUVmax, and 21.2% and - 17.5% for SULpeak. 18F-FDG repeatability coefficient confidence intervals resulted in the following patient stratification using SULpeak for the second patient cohort: 11-progressive disease, 5-stable disease, 7-partial response, and 1-complete response with three inevaluable patients. The asymmetric repeatability coefficients response criteria for SULpeak changed the status of 3 patients compared to the standard Positron Emission Tomography Response Criteria in Solid Tumors of ± 30% SULpeak. CONCLUSION: In evaluating bone tumor response for breast cancer patients with bone-dominant metastases using 18F-FDG SUVmax, the repeatability coefficients from test-retest studies show that reductions of more than 17% and increases of more than 20% are unlikely to be due to measurement variability. Serial 18F-FDG imaging in clinical trials investigating bone lesions in these patients, such as the ECOG-ACRIN EA1183 trial, benefit from confidence limits that allow interpretation of response.

2.
Res Sq ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38313279

RESUMO

BACKGROUND: Standard measures of response such as Response Evaluation Criteria in Solid Tumors are ineffective for bone lesions, often making breast cancer patients with bone-dominant metastases ineligible for clinical trials with potentially helpful therapies. In this study we prospectively evaluated the test-retest uptake variability of 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) in a cohort of breast cancer patients with bone-dominant metastases to determine response criteria. The thresholds for 95% specificity of change versus no-change were then applied to a second cohort of breast cancer patients with bone-dominant metastases.In this study, nine patients with 38 bone lesions were imaged with 18F-FDG in the same calibrated scanner twice within 14 days. Tumor uptake was quantified as the maximum tumor voxel normalized by dose and body weight (SUVmax) and the mean of a 1-cc maximal uptake volume normalized by dose and lean-body-mass (SULpeak). The asymmetric repeatability coefficients with confidence intervals of SUVmax and SULpeak were used to determine limits of 18F-FDG uptake variability. A second cohort of 28 breast cancer patients with bone-dominant metastases that had 146 metastatic bone lesions was imaged with 18F-FDG before and after standard-of-care therapy for response assessment. RESULTS: The mean relative difference of SUVmax in 38 bone tumors of the first cohort was 4.3%. The upper and lower asymmetric limits of the repeatability coefficient were 19.4% and -16.3%, respectively. The 18F-FDG repeatability coefficient confidence intervals resulted in the following patient stratification for the second patient cohort: 11-progressive disease, 5-stable disease, 7-partial response, and 1-complete response with three inevaluable patients. The asymmetric repeatability coefficients response criteria changed the status of 3 patients compared to standard the standard Positron Emission Tomography Response Criteria in Solid Tumors of ±30% SULpeak. CONCLUSIONS: In evaluating bone tumor response for breast cancer patients with bone-dominant metastases using 18F-FDG uptake, the repeatability coefficients from test-retest studies show that reductions of more than 17% and increases of more than 20% are unlikely to be due to measurement variability. Serial 18F-FDG imaging in clinical trials investigating bone lesions from these patients, such as the ECOG-ACRIN EA1183 trial, benefit from confidence limits that allow interpretation of response.

3.
Breast Cancer Res ; 25(1): 138, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946201

RESUMO

PURPOSE: To investigate combined MRI and 18F-FDG PET for assessing breast tumor metabolism/perfusion mismatch and predicting pathological response and recurrence-free survival (RFS) in women treated for breast cancer. METHODS: Patients undergoing neoadjuvant chemotherapy (NAC) for locally-advanced breast cancer were imaged at three timepoints (pre, mid, and post-NAC), prior to surgery. Imaging included diffusion-weighted and dynamic contrast-enhanced (DCE-) MRI and quantitative 18F-FDG PET. Tumor imaging measures included apparent diffusion coefficient, peak percent enhancement (PE), peak signal enhancement ratio (SER), functional tumor volume, and washout volume on MRI and standardized uptake value (SUVmax), glucose delivery (K1) and FDG metabolic rate (MRFDG) on PET, with percentage changes from baseline calculated at mid- and post-NAC. Associations of imaging measures with pathological response (residual cancer burden [RCB] 0/I vs. II/III) and RFS were evaluated. RESULTS: Thirty-five patients with stage II/III invasive breast cancer were enrolled in the prospective study (median age: 43, range: 31-66 years, RCB 0/I: N = 11/35, 31%). Baseline imaging metrics were not significantly associated with pathologic response or RFS (p > 0.05). Greater mid-treatment decreases in peak PE, along with greater post-treatment decreases in several DCE-MRI and 18F-FDG PET measures were associated with RCB 0/I after NAC (p < 0.05). Additionally, greater mid- and post-treatment decreases in DCE-MRI (peak SER, washout volume) and 18F-FDG PET (K1) were predictive of prolonged RFS. Mid-treatment decreases in metabolism/perfusion ratios (MRFDG/peak PE, MRFDG/peak SER) were associated with improved RFS. CONCLUSION: Mid-treatment changes in both PET and MRI measures were predictive of RCB status and RFS following NAC. Specifically, our results indicate a complementary relationship between DCE-MRI and 18F-FDG PET metrics and potential value of metabolism/perfusion mismatch as a marker of patient outcome.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Adulto , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Fluordesoxiglucose F18/uso terapêutico , Terapia Neoadjuvante/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Estudos Prospectivos , Resultado do Tratamento , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos
4.
J Nucl Med ; 64(3): 351-354, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36863779

RESUMO

PET imaging with 16α-18F-fluoro-17ß-fluoroestradiol (18F-FES), a radiolabeled form of estradiol, allows whole-body, noninvasive evaluation of estrogen receptor (ER). 18F-FES is approved by the U.S. Food and Drug Administration as a diagnostic agent "for the detection of ER-positive lesions as an adjunct to biopsy in patients with recurrent or metastatic breast cancer." The Society of Nuclear Medicine and Molecular Imaging (SNMMI) convened an expert work group to comprehensively review the published literature for 18F-FES PET in patients with ER-positive breast cancer and to establish appropriate use criteria (AUC). The findings and discussions of the SNMMI 18F-FES work group, including example clinical scenarios, were published in full in 2022 and are available at https://www.snmmi.org/auc Of the clinical scenarios evaluated, the work group concluded that the most appropriate uses of 18F-FES PET are to assess ER functionality when endocrine therapy is considered either at initial diagnosis of metastatic breast cancer or after progression of disease on endocrine therapy, the ER status of lesions that are difficult or dangerous to biopsy, and the ER status of lesions when other tests are inconclusive. These AUC are intended to enable appropriate clinical use of 18F-FES PET, more efficient approval of FES use by payers, and promotion of investigation into areas requiring further research. This summary includes the rationale, methodology, and main findings of the work group and refers the reader to the complete AUC document.


Assuntos
Neoplasias da Mama , Receptores de Estrogênio , Feminino , Humanos , Biópsia , Neoplasias da Mama/diagnóstico por imagem , Imagem Molecular , Tomografia por Emissão de Pósitrons , Estados Unidos , Estradiol/metabolismo
5.
Breast Cancer Res ; 23(1): 88, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34425871

RESUMO

PURPOSE: This study evaluated the ability of 18F-Fluorodeoxyglucose (FDG) and 18F-Fluorothymidine (FLT) imaging with positron emission tomography (PET) to measure early response to endocrine therapy from baseline to just prior to surgical resection in estrogen receptor positive (ER+) breast tumors. METHODS: In two separate studies, women with early stage ER+ breast cancer underwent either paired FDG-PET (n = 22) or FLT-PET (n = 27) scans prior to endocrine therapy and again in the pre-operative setting. Tissue samples for Ki-67 were taken for all patients both prior to treatment and at the time of surgery. RESULTS: FDG maximum standardized uptake value (SUVmax) declined in 19 of 22 lesions (mean 17% (range -45 to 28%)). FLT SUVmax declined in 24 of 27 lesions (mean 26% (range -77 to 7%)). The Ki-67 index declined in both studies, from pre-therapy (mean 23% (range 1 to 73%)) to surgery [mean 8% (range < 1 to 41%)]. Pre- and post-therapy PET measures showed strong rank-order agreement with Ki-67 percentages for both tracers; however, the percent change in FDG or FLT SUVmax did not demonstrate a strong correlation with Ki-67 index change or Ki-67 at time of surgery. CONCLUSIONS: A window-of-opportunity approach using PET imaging to assess early response of breast cancer therapy is feasible. FDG and FLT-PET imaging following a short course of neoadjuvant endocrine therapy demonstrated measurable changes in SUVmax in early stage ER+ positive breast cancers. The percentage change in FDG and FLT-PET uptake did not correlate with changes in Ki-67; post-therapy SUVmax for both tracers was significantly associated with post-therapy Ki-67, an established predictor of endocrine therapy response.


Assuntos
Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Didesoxinucleosídeos/uso terapêutico , Fluordesoxiglucose F18/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/cirurgia , Feminino , Humanos , Antígeno Ki-67/metabolismo , Mastectomia , Pessoa de Meia-Idade , Terapia Neoadjuvante , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/uso terapêutico , Receptores de Estrogênio/metabolismo , Resultado do Tratamento
7.
Eur J Nucl Med Mol Imaging ; 48(12): 3990-4001, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33677641

RESUMO

PURPOSE: Probe-based dynamic (4-D) imaging modalities capture breast intratumor heterogeneity both spatially and kinetically. Characterizing heterogeneity through tumor sub-populations with distinct functional behavior may elucidate tumor biology to improve targeted therapy specificity and enable precision clinical decision making. METHODS: We propose an unsupervised clustering algorithm for 4-D imaging that integrates Markov-Random Field (MRF) image segmentation with time-series analysis to characterize kinetic intratumor heterogeneity. We applied this to dynamic FDG PET scans by identifying distinct time-activity curve (TAC) profiles with spatial proximity constraints. We first evaluated algorithm performance using simulated dynamic data. We then applied our algorithm to a dataset of 50 women with locally advanced breast cancer imaged by dynamic FDG PET prior to treatment and followed to monitor for disease recurrence. A functional tumor heterogeneity (FTH) signature was then extracted from functionally distinct sub-regions within each tumor. Cross-validated time-to-event analysis was performed to assess the prognostic value of FTH signatures compared to established histopathological and kinetic prognostic markers. RESULTS: Adding FTH signatures to a baseline model of known predictors of disease recurrence and established FDG PET uptake and kinetic markers improved the concordance statistic (C-statistic) from 0.59 to 0.74 (p = 0.005). Unsupervised hierarchical clustering of the FTH signatures identified two significant (p < 0.001) phenotypes of tumor heterogeneity corresponding to high and low FTH. Distributions of FDG flux, or Ki, were significantly different (p = 0.04) across the two phenotypes. CONCLUSIONS: Our findings suggest that imaging markers of FTH add independent value beyond standard PET imaging metrics in predicting recurrence-free survival in breast cancer and thus merit further study.


Assuntos
Neoplasias da Mama , Fluordesoxiglucose F18 , Biomarcadores , Neoplasias da Mama/diagnóstico por imagem , Análise por Conglomerados , Feminino , Humanos , Recidiva Local de Neoplasia , Tomografia por Emissão de Pósitrons , Prognóstico
8.
J Nucl Med ; 62(2): 184-190, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32591490

RESUMO

Histone deacetylase inhibitors (HDACIs) may overcome endocrine resistance in estrogen receptor-positive (ER+) metastatic breast cancer. We tested whether 18F-fluoroestradiol PET imaging would elucidate the pharmacodynamics of combination HDACIs and endocrine therapy. Methods: Patients with ER+/human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer with prior clinical benefit from endocrine therapy but later progression on aromatase inhibitor (AI) therapy were given vorinostat (400 mg daily) sequentially or simultaneously with AI. 18F-fluoroestradiol PET and 18F-FDG PET scans were performed at baseline, week 2, and week 8. Results: Eight patients were treated sequentially, and then 15 simultaneously. Eight patients had stable disease at week 8, and 6 of these 8 patients had more than 6 mo of stable disease. Higher baseline 18F-fluoroestradiol uptake was associated with longer progression-free survival. 18F-fluoroestradiol uptake did not systematically increase with vorinostat exposure, indicating no change in regional ER estradiol binding, and 18F-FDG uptake did not show a significant decrease, as would have been expected with tumor regression. Conclusion: Simultaneous HDACIs and AI dosing in patients with cancer resistant to AI alone showed clinical benefit (6 or more months without progression) in 4 of 10 evaluable patients. Higher 18F-fluoroestradiol PET uptake identified patients likely to benefit from combination therapy, but vorinostat did not change ER expression at the level of detection of 18F-fluoroestradiol PET.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Estradiol/análogos & derivados , Tomografia por Emissão de Pósitrons , Receptores de Estrogênio/metabolismo , Vorinostat/farmacologia , Adulto , Idoso , Neoplasias da Mama/metabolismo , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Pessoa de Meia-Idade , Metástase Neoplásica , Receptor ErbB-2/metabolismo
10.
J Nucl Med ; 60(5): 608-614, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30361381

RESUMO

Calibration and reproducibility of quantitative 18F-FDG PET measures are essential for adopting integral 18F-FDG PET/CT biomarkers and response measures in multicenter clinical trials. We implemented a multicenter qualification process using National Institute of Standards and Technology-traceable reference sources for scanners and dose calibrators, and similar patient and imaging protocols. We then assessed SUV in patient test-retest studies. Methods: Five 18F-FDG PET/CT scanners from 4 institutions (2 in a National Cancer Institute-designated Comprehensive Cancer Center, 3 in a community-based network) were qualified for study use. Patients were scanned twice within 15 d, on the same scanner (n = 10); different but same model scanners within an institution (n = 2); or different model scanners at different institutions (n = 11). SUVmax was recorded for lesions, and SUVmean for normal liver uptake. Linear mixed models with random intercept were fitted to evaluate test-retest differences in multiple lesions per patient and to estimate the concordance correlation coefficient. Bland-Altman plots and repeatability coefficients were also produced. Results: In total, 162 lesions (82 bone, 80 soft tissue) were assessed in patients with breast cancer (n = 17) or other cancers (n = 6). Repeat scans within the same institution, using the same scanner or 2 scanners of the same model, had an average difference in SUVmax of 8% (95% confidence interval, 6%-10%). For test-retest on different scanners at different sites, the average difference in lesion SUVmax was 18% (95% confidence interval, 13%-24%). Normal liver uptake (SUVmean) showed an average difference of 5% (95% confidence interval, 3%-10%) for the same scanner model or institution and 6% (95% confidence interval, 3%-11%) for different scanners from different institutions. Protocol adherence was good; the median difference in injection-to-acquisition time was 2 min (range, 0-11 min). Test-retest SUVmax variability was not explained by available information on protocol deviations or patient or lesion characteristics. Conclusion:18F-FDG PET/CT scanner qualification and calibration can yield highly reproducible test-retest tumor SUV measurements. Our data support use of different qualified scanners of the same model for serial studies. Test-retest differences from different scanner models were greater; more resolution-dependent harmonization of scanner protocols and reconstruction algorithms may be capable of reducing these differences to values closer to same-scanner results.


Assuntos
Fluordesoxiglucose F18/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Idoso , Transporte Biológico , Calibragem , Feminino , Humanos , Fígado/diagnóstico por imagem , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
11.
PET Clin ; 13(3): 415-422, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30100079

RESUMO

Molecular imaging using 16α-[18F]fluoro-17ß-estradiol (FES) and 18F-fluoro-furanyl-norprogesterone PET can assess in vivo function of steroid hormone receptors in breast cancer. These experimental agents have been tested in many single-center clinical trials and show promise to elucidate prognosis and predict endocrine therapy response. The current multicenter trial of FES-PET imaging will help bring this radiotracer closer to clinical use. There is tremendous potential for these tracers to advance drug development, enhance understanding of estrogen receptor-positive tumor biology, and personalize treatment.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Estradiol/análogos & derivados , Feminino , Fluordesoxiglucose F18 , Humanos
12.
J Nucl Med ; 59(12): 1823-1830, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29748233

RESUMO

Assessing therapy response of breast cancer bone metastases is challenging. In retrospective studies, serial 18F-FDG PET was predictive of time to skeletal-related events (tSRE) and time to progression (TTP). 18F-NaF PET improves bone metastasis detection compared with bone scanning. We prospectively tested 18F-FDG PET and 18F-NaF PET to predict tSRE, TTP, and overall survival (OS) in patients with bone-dominant metastatic breast cancer (MBC). Methods: Patients with bone-dominant MBC were imaged with 18F-FDG PET and 18F-NaF PET before starting new therapy (scan1) and again at a range of times centered around approximately 4 mo later (scan2). Maximum standardized uptake value (SUVmax) and lean body mass adjusted standardized uptake (SULpeak) were recorded for a single index lesion and up to 5 most dominant lesions for each scan. tSRE, TTP, and OS were assessed exclusive of the PET images. Univariate Cox regression was performed to test the association between clinical endpoints and 18F-FDG PET and 18F-NaF PET measures. mPERCIST (Modified PET Response Criteria in Solid Tumors) were also applied. Survival curves for mPERCIST compared response categories of complete response+partial response+stable disease versus progressive disease for tSRE, TTP, and OS. Results: Twenty-eight patients were evaluated. Higher 18F-FDG SULpeak at scan2 predicted shorter time to tSRE (P = <0.001) and TTP (P = 0.044). Higher 18F-FDG SUVmax at scan2 predicted a shorter time to tSRE (P = <0.001). A multivariable model using 18F-FDG SUVmax of the index lesion at scan1 plus the difference in SUVmax of up to 5 lesions between scans was predictive for tSRE and TTP. Among 24 patients evaluable by 18F-FDG PET mPERCIST, tSRE and TTP were longer in responders (complete response, partial response, or stable disease) than in nonresponders (progressive disease) (P = 0.007, 0.028, respectively), with a trend toward improved survival (P = 0.1). An increase in the uptake between scans of up to 5 lesions by 18F-NaF PET was associated with longer OS (P = 0.027). Conclusion: Changes in 18F-FDG PET parameters during therapy are predictive of tSRE and TTP, but not OS. mPERCIST evaluation in bone lesions may be useful in assessing response to therapy and is worthy of evaluation in multicenter, prospective trials. Serial 18F-NaF PET was associated with OS but was not useful for predicting TTP or tSRE in bone-dominant MBC.


Assuntos
Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Tomografia por Emissão de Pósitrons/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/mortalidade , Progressão da Doença , Feminino , Radioisótopos de Flúor , Fluordesoxiglucose F18 , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estudos Prospectivos , Compostos Radiofarmacêuticos
14.
Phys Med Biol ; 62(9): 3639-3655, 2017 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-28191877

RESUMO

We developed a method to evaluate variations in the PET imaging process in order to characterize the relative ability of static and dynamic metrics to measure breast cancer response to therapy in a clinical trial setting. We performed a virtual clinical trial by generating 540 independent and identically distributed PET imaging study realizations for each of 22 original dynamic fluorodeoxyglucose (18F-FDG) breast cancer patient studies pre- and post-therapy. Each noise realization accounted for known sources of uncertainty in the imaging process, such as biological variability and SUV uptake time. Four definitions of SUV were analyzed, which were SUVmax, SUVmean, SUVpeak, and SUV50%. We performed a ROC analysis on the resulting SUV and kinetic parameter uncertainty distributions to assess the impact of the variability on the measurement capabilities of each metric. The kinetic macro parameter, K i , showed more variability than SUV (mean CV K i = 17%, SUV = 13%), but K i pre- and post-therapy distributions also showed increased separation compared to the SUV pre- and post-therapy distributions (mean normalized difference K i = 0.54, SUV = 0.27). For the patients who did not show perfect separation between the pre- and post-therapy parameter uncertainty distributions (ROC AUC < 1), dynamic imaging outperformed SUV in distinguishing metabolic change in response to therapy, ranging from 12 to 14 of 16 patients over all SUV definitions and uptake time scenarios (p < 0.05). For the patient cohort in this study, which is comprised of non-high-grade ER+ tumors, K i outperformed SUV in an ROC analysis of the parameter uncertainty distributions pre- and post-therapy. This methodology can be applied to different scenarios with the ability to inform the design of clinical trials using PET imaging.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/tratamento farmacológico , Simulação por Computador , Feminino , Fluordesoxiglucose F18 , Humanos , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/normas , Compostos Radiofarmacêuticos
15.
Clin Cancer Res ; 23(2): 407-415, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27342400

RESUMO

PURPOSE: 18F-fluoroestradiol (FES) PET scans measure regional estrogen binding, and 18F-fluorodeoxyglucose (FDG) PET measures tumor glycolytic activity. We examined quantitative and qualitative imaging biomarkers of progression-free survival (PFS) in breast cancer patients receiving endocrine therapy. EXPERIMENTAL DESIGN: Ninety patients with breast cancer from an estrogen receptor-positive (ER+), HER2- primary tumor underwent FES PET and FDG PET scans prior to endocrine therapy (63% aromatase inhibitor, 22% aromatase inhibitor and fulvestrant, 15% other). Eighty-four had evaluable data for PFS prediction. RESULTS: Recursive partitioning with 5-fold internal cross-validation used both FES PET and FDG PET measures to classify patients into three distinct response groups. FDG PET identified 24 patients (29%) with low FDG uptake, suggesting indolent tumors. These patients had a median PFS of 26.1 months (95% confidence interval, 11.2-49.7). Of patients with more FDG-avid tumors, 50 (59%) had high average FES uptake, and 10 (12%) had low average FES uptake. These groups had median PFS of 7.9 (5.6-11.8) and 3.3 months (1.4-not evaluable), respectively. Patient and tumor features did not replace or improve the PET measures' prediction of PFS. Prespecified endocrine resistance classifiers identified in smaller cohorts did not individually predict PFS. CONCLUSIONS: A wide range of therapy regimens are available for treatment of ER+ metastatic breast cancer, but no guidelines are established for sequencing these therapies. FDG PET and FES PET may help guide the timing of endocrine therapy and selection of targeted and/or cytotoxic chemotherapy. A multicenter trial is ongoing for external validation. Clin Cancer Res; 23(2); 407-15. ©2016 AACR.


Assuntos
Antineoplásicos Hormonais/administração & dosagem , Neoplasias da Mama Masculina/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/genética , Adulto , Idoso , Inibidores da Aromatase/administração & dosagem , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama Masculina/diagnóstico por imagem , Neoplasias da Mama Masculina/genética , Neoplasias da Mama Masculina/patologia , Intervalo Livre de Doença , Estradiol/administração & dosagem , Estradiol/análogos & derivados , Feminino , Fluordesoxiglucose F18/uso terapêutico , Fulvestranto , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/uso terapêutico , Receptor ErbB-2/genética
16.
J Natl Compr Canc Netw ; 14(2): 144-7, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26850484

RESUMO

Changes in estrogen receptor (ER) expression over the course of therapy may affect response to endocrine therapy. However, measuring temporal changes in ER expression requires serial biopsies, which are impractical and poorly tolerated by most patients. Functional ER imaging using (18)F-fluoroestradiol (FES)-PET provides a noninvasive measure of regional ER expression and is ideally suited to serial studies. Additionally, lack of measurable FES uptake in metastatic sites of disease predict tumor progression in patients with ER-positive primary tumors treated with endocrine therapy. This report presents a case of restored sensitivity to endocrine therapy in a patient with bone-dominant breast cancer who underwent serial observational FES-PET imaging over the course of several treatments at our center, demonstrating the temporal heterogeneity of regional ER expression. Although loss and restoration of endocrine sensitivity in patients who have undergone prior hormonal and cytotoxic treatments has been reported, this is, to our knowledge, the first time the accompanying changes in ER expression have been documented by molecular imaging.


Assuntos
Osso e Ossos/metabolismo , Osso e Ossos/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Receptores de Estrogênio/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Imagem Molecular/métodos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/administração & dosagem
17.
J Nucl Med ; 57(2): 226-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26493206

RESUMO

UNLABELLED: Uptake time (interval between tracer injection and image acquisition) affects the SUV measured for tumors in (18)F-FDG PET images. With dissimilar uptake times, changes in tumor SUVs will be under- or overestimated. This study examined the influence of uptake time on tumor response assessment using a virtual clinical trials approach. METHODS: Tumor kinetic parameters were estimated from dynamic (18)F-FDG PET scans of breast cancer patients and used to simulate time-activity curves for 45-120 min after injection. Five-minute uptake time frames followed 4 scenarios: the first was a standardized static uptake time (the SUV from 60 to 65 min was selected for all scans), the second was uptake times sampled from an academic PET facility with strict adherence to standardization protocols, the third was a distribution similar to scenario 2 but with greater deviation from standards, and the fourth was a mixture of hurried scans (45- to 65-min start of image acquisition) and frequent delays (58- to 115-min uptake time). The proportion of out-of-range scans (<50 or >70 min, or >15-min difference between paired scans) was 0%, 20%, 44%, and 64% for scenarios 1, 2, 3, and 4, respectively. A published SUV correction based on local linearity of uptake-time dependence was applied in a separate analysis. Influence of uptake-time variation was assessed as sensitivity for detecting response (probability of observing a change of ≥30% decrease in (18)F-FDG PET SUV given a true decrease of 40%) and specificity (probability of observing an absolute change of <30% given no true change). RESULTS: Sensitivity was 96% for scenario 1, and ranged from 73% for scenario 4 (95% confidence interval, 70%-76%) to 92% (90%-93%) for scenario 2. Specificity for all scenarios was at least 91%. Single-arm phase II trials required an 8%-115% greater sample size for scenarios 2-4 than for scenario 1. If uptake time is known, SUV correction methods may raise sensitivity to 87%-95% and reduce the sample size increase to less than 27%. CONCLUSION: Uptake-time deviations from standardized protocols occur frequently, potentially decreasing the performance of (18)F-FDG PET response biomarkers. Correcting SUV for uptake time improves sensitivity, but algorithm refinement is needed. Stricter uptake-time control and effective correction algorithms could improve power and decrease costs for clinical trials using (18)F-FDG PET endpoints.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Idoso , Algoritmos , Biomarcadores , Neoplasias da Mama/terapia , Feminino , Fluordesoxiglucose F18/farmacocinética , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Compostos Radiofarmacêuticos/farmacocinética , Padrões de Referência , Reprodutibilidade dos Testes , Tamanho da Amostra
18.
J Nucl Med ; 56(8): 1223-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26112020

RESUMO

UNLABELLED: (18)F-fluoromisonidazole ((18)F-FMISO) is the most widely used PET agent for imaging hypoxia, a condition associated with resistance to tumor therapy. (18)F-FMISO equilibrates in normoxic tissues but is retained under hypoxic conditions because of reduction and binding to macromolecules. A simple tissue-to-blood (TB) ratio is suitable for quantifying hypoxia. A TB ratio threshold of 1.2 or greater is useful in discriminating the hypoxic volume (HV) of tissue; TBmax is the maximum intensity of the hypoxic region and does not invoke a threshold. Because elimination of blood sampling would simplify clinical use, we tested the validity of using imaging regions as a surrogate for blood sampling. METHODS: Patients underwent 20-min (18)F-FMISO scanning during the 90- to 140-min interval after injection with venous blood sampling. Two hundred twenty-three (18)F-FMISO patient studies had detectable surrogate blood regions in the field of view. Quantitative parameters of hypoxia (TBmax, HV) derived from blood samples were compared with values using surrogate blood regions derived from the heart, aorta, or cerebellum. In a subset of brain cancer patients, parameters from blood samples and from the cerebellum were compared for their ability to independently predict outcome. RESULTS: Vascular regions of heart showed the highest correlation to measured blood activity (R(2) = 0.84). For brain studies, cerebellar activity was similarly correlated to blood samples. In brain cancer patients, Kaplan-Meier analysis showed that image-derived reference regions had predictive power nearly identical to parameters derived from blood, thus obviating the need for venous sampling in these patients. CONCLUSION: Simple static analysis of (18)F-FMISO PET captures both the intensity (TBmax) and the spatial extent (HV) of tumor hypoxia. An image-derived region to assess blood activity can be used as a surrogate for blood sampling in quantification of hypoxia.


Assuntos
Hipóxia/diagnóstico por imagem , Misonidazol/análogos & derivados , Neoplasias/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Aorta/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Progressão da Doença , Feminino , Coração/diagnóstico por imagem , Humanos , Hipóxia/diagnóstico , Estimativa de Kaplan-Meier , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico , Oxigênio/química , Tomografia por Emissão de Pósitrons/métodos , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Compostos Radiofarmacêuticos , Distribuição Tecidual , Resultado do Tratamento
19.
Tomography ; 1(1): 53-60, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26807443

RESUMO

Prior reports have suggested that delayed FDG-PET oncology imaging can improve the contrast-to-noise ratio (CNR) for known lesions. Our goal was to estimate realistic bounds for lesion detectability for static measurements with one to four hours between FDG injection and image acquisition. Tumor and normal tissue kinetic model parameters were estimated from dynamic PET studies of patients with early stage breast cancer. These were used to generate time-activity curves (TACs) out to four hours, for which we assumed both nonreversible and reversible models with different rates of FDG dephosphorylation (k4). For each pair of tumor and normal tissue TACs, 600 PET sinogram realizations were generated, and images were reconstructed using OSEM. Test statistics for each tumor and normal tissue region of interest were output from the computer model observers and evaluated using an ROC analysis with the calculated AUC providing a measure of lesion detectability. For the nonreversible model (k4 = 0), the AUC increased in 11/23 (48%) of patients for one to two hours after the current standard post-radiotracer injection imaging window of one hour. This improvement was driven by increased tumor/normal tissue contrast before the impact of increased noise due to radiotracer decay began to dominate the imaging signal. As k4 was increased from 0 to 0.01 min-1, the time of maximum detectability shifted earlier, as the decreasing FDG concentration in the tumor lowered the CNR. These results imply that delayed PET imaging may reveal low-conspicuity lesions that would have otherwise gone undetected.

20.
Mol Imaging Biol ; 16(3): 431-40, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24170452

RESUMO

PURPOSE: 16α-[(18)F]-fluoro-17ß-estradiol positron emission tomography (FES-PET) quantifies estrogen receptor (ER) expression in tumors and may provide diagnostic benefit. PROCEDURES: Women with newly diagnosed metastatic breast cancer (MBC) from an ER-positive primary tumor were imaged before starting endocrine therapy. FES uptake was evaluated qualitatively and quantitatively, and associated with response and with ER expression. RESULTS: Nineteen patients underwent FES imaging. Fifteen had a biopsy of a metastasis and 15 were evaluable for response. Five patients had quantitatively low FES uptake, six had at least one site of qualitatively FES-negative disease. All patients with an ER-negative biopsy had both low uptake and at least one site of FES-negative disease. Of response-evaluable patients, 2/2 with low FES standard uptake value tumors had progressive disease within 6 months, as did 2/3 with qualitatively FES-negative tumors. CONCLUSIONS: Low/absent FES uptake correlates with lack of ER expression. FES-positron emission tomography can help identify patients with endocrine resistant disease and safely measures ER in MBC.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Estradiol , Radioisótopos de Flúor , Metástase Neoplásica/patologia , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Mama/patologia , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...