Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 12747, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550406

RESUMO

Microbiomes confer beneficial physiological traits to their host, but microbial diversity is inherently variable, challenging the relationship between microbes and their contribution to host health. Here, we compare the diversity and architectural complexity of the epidermal microbiome from 74 individual whale sharks (Rhincodon typus) across five aggregations globally to determine if network properties may be more indicative of the microbiome-host relationship. On the premise that microbes are expected to exhibit biogeographic patterns globally and that distantly related microbial groups can perform similar functions, we hypothesized that microbiome co-occurrence patterns would occur independently of diversity trends and that keystone microbes would vary across locations. We found that whale shark aggregation was the most important factor in discriminating taxonomic diversity patterns. Further, microbiome network architecture was similar across all aggregations, with degree distributions matching Erdos-Renyi-type networks. The microbiome-derived networks, however, display modularity indicating a definitive microbiome structure on the epidermis of whale sharks. In addition, whale sharks hosted 35 high-quality metagenome assembled genomes (MAGs) of which 25 were present from all sample locations, termed the abundant 'core'. Two main MAG groups formed, defined here as Ecogroup 1 and 2, based on the number of genes present in metabolic pathways, suggesting there are at least two important metabolic niches within the whale shark microbiome. Therefore, while variability in microbiome diversity is high, network structure and core taxa are inherent characteristics of the epidermal microbiome in whale sharks. We suggest the host-microbiome and microbe-microbe interactions that drive the self-assembly of the microbiome help support a functionally redundant abundant core and that network characteristics should be considered when linking microbiomes with host health.


Assuntos
Microbiota , Tubarões , Animais , Tubarões/fisiologia , Epiderme , Células Epidérmicas , Microbiota/genética , Metagenoma
2.
Front Cell Dev Biol ; 10: 786052, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198557

RESUMO

The embryonic ectoderm is composed of four domains: neural plate, neural crest, pre-placodal region (PPR) and epidermis. Their formation is initiated during early gastrulation by dorsal-ventral and anterior-posterior gradients of signaling factors that first divide the embryonic ectoderm into neural and non-neural domains. Next, the neural crest and PPR domains arise, either via differential competence of the neural and non-neural ectoderm (binary competence model) or via interactions between the neural and non-neural ectoderm tissues to produce an intermediate neural border zone (NB) (border state model) that subsequently separates into neural crest and PPR. Many previous gain- and loss-of-function experiments demonstrate that numerous TFs are expressed in initially overlapping zones that gradually resolve into patterns that by late neurula stages are characteristic of each of the four domains. Several of these studies suggested that this is accomplished by a combination of repressive TF interactions and competence to respond to local signals. In this study, we ectopically expressed TFs that at neural plate stages are characteristic of one domain in a different domain to test whether they act cell autonomously as repressors. We found that almost all tested TFs caused reduced expression of the other TFs. At gastrulation these effects were strictly within the lineage-labeled cells, indicating that the effects were cell autonomous, i.e., due to TF interactions within individual cells. Analysis of previously published single cell RNAseq datasets showed that at the end of gastrulation, and continuing to neural tube closure stages, many ectodermal cells express TFs characteristic of more than one neural plate stage domain, indicating that different TFs have the opportunity to interact within the same cell. At neurula stages repression was observed both in the lineage-labeled cells and in adjacent cells not bearing detectable lineage label, suggesting that cell-to-cell signaling has begun to contribute to the separation of the domains. Together, these observations directly demonstrate previous suggestions in the literature that the segregation of embryonic ectodermal domains initially involves cell autonomous, repressive TF interactions within an individual cell followed by the subsequent advent of non-cell autonomous signaling to neighbors.

3.
Microbiome ; 8(1): 93, 2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32534596

RESUMO

BACKGROUND: The vertebrate clade diverged into Chondrichthyes (sharks, rays, and chimeras) and Osteichthyes fishes (bony fishes) approximately 420 mya, with each group accumulating vast anatomical and physiological differences, including skin properties. The skin of Chondrichthyes fishes is covered in dermal denticles, whereas Osteichthyes fishes are covered in scales and are mucous rich. The divergence time among these two fish groups is hypothesized to result in predictable variation among symbionts. Here, using shotgun metagenomics, we test if patterns of diversity in the skin surface microbiome across the two fish clades match predictions made by phylosymbiosis theory. We hypothesize (1) the skin microbiome will be host and clade-specific, (2) evolutionary difference in elasmobranch and teleost will correspond with a concomitant increase in host-microbiome dissimilarity, and (3) the skin structure of the two groups will affect the taxonomic and functional composition of the microbiomes. RESULTS: We show that the taxonomic and functional composition of the microbiomes is host-specific. Teleost fish had lower average microbiome within clade similarity compared to among clade comparison, but their composition is not different among clade in a null based model. Elasmobranch's average similarity within clade was not different than across clade and not different in a null based model of comparison. In the comparison of host distance with microbiome distance, we found that the taxonomic composition of the microbiome was related to host distance for the elasmobranchs, but not the teleost fishes. In comparison, the gene function composition was not related to the host-organism distance for elasmobranchs but was negatively correlated with host distance for teleost fishes. CONCLUSION: Our results show the patterns of phylosymbiosis are not consistent across both fish clades, with the elasmobranchs showing phylosymbiosis, while the teleost fish are not. The discrepancy may be linked to alternative processes underpinning microbiome assemblage, including possible historical host-microbiome evolution of the elasmobranchs and convergent evolution in the teleost which filter specific microbial groups. Our comparison of the microbiomes among fishes represents an investigation into the microbial relationships of the oldest divergence of extant vertebrate hosts and reveals that microbial relationships are not consistent across evolutionary timescales. Video abstract.


Assuntos
Elasmobrânquios/microbiologia , Peixes/microbiologia , Tegumento Comum/microbiologia , Metagenômica , Microbiota/genética , Filogenia , Simbiose , Animais , Bactérias/genética , Bactérias/isolamento & purificação
4.
Neuron ; 86(4): 955-970, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25959734

RESUMO

How the highly stereotyped morphologies of individual neurons are genetically specified is not well understood. We identify six transcription factors (TFs) expressed in a combinatorial manner in seven post-mitotic adult leg motor neurons (MNs) that are derived from a single neuroblast in Drosophila. Unlike TFs expressed in mitotically active neuroblasts, these TFs do not regulate each other's expression. Removing the activity of a single TF resulted in specific morphological defects, including muscle targeting and dendritic arborization, and in a highly specific walking defect in adult flies. In contrast, when the expression of multiple TFs was modified, nearly complete transformations in MN morphologies were generated. These results show that the morphological characteristics of a single neuron are dictated by a combinatorial code of morphology TFs (mTFs). mTFs function at a previously unidentified regulatory tier downstream of factors acting in the NB but independently of factors that act in terminally differentiated neurons.


Assuntos
Dendritos/patologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Neurônios Motores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem da Célula , Dendritos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas de Homeodomínio/genética , Neurônios Motores/citologia
5.
J Sch Psychol ; 52(1): 97-107, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24495497

RESUMO

Proficiency in letter-sound correspondence is important for decoding connected text. This study examined the effects of an evidence-based intervention, incremental rehearsal (IR), on the letter-sound expression of three kindergarten English language learners (ELLs) performing below the district benchmark for letter-sound fluency. Participants were native speakers of Hmong, Spanish, and Polish. A multiple-baseline design across sets of unknown letter sounds was used to evaluate the effects of IR on letter-sound expression. Visual analysis of the data showed an increase in level and trend when IR was introduced in each phase. Percentage of all non-overlapping data (PAND) ranged from 95% to 100%. All participants exceeded expected growth and reached the spring district benchmark for letter-sound fluency. Results suggest that IR is a promising intervention for increasing letter-sound expression for ELLs who evidence delays in acquiring letter sounds.


Assuntos
Desenvolvimento da Linguagem , Idioma , Aprendizagem , Multilinguismo , Fonética , Pré-Escolar , Feminino , Humanos , Masculino , Instituições Acadêmicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...