Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 872: 162248, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36804976

RESUMO

Sharks, as top order predators, provide a guidance on how contaminants such as mercury bioaccumulate in marine environments. This study assessed the bioaccumulation of mercury (total mercury, THg) in the muscle, liver, red blood cells (RBC), and plasma of pelagic and bigeye thresher sharks (Alopias pelagicus and A. superciliosus) from eastern tropical Pacific. Additionally, the concentration of methylmercury (MeHg) in muscle was also determined to assess risks for human consumption. For both species, muscle THg concentrations (4.05 ± 2.15 and 4.12 ± 1.84 µg g-1 dry weight for pelagic and bigeye thresher shark) were higher than that in other tissues. THg concentrations for all tissues were significantly correlated with precaudal length, with higher accumulation rates after maturity in pelagic than bigeye thresher sharks, suggesting an associated dietary shift at maturation. Correlations among tissues in both species suggested similar transportation and distribution patterns in internal tissues. The δ13C values in muscle, RBC and plasma suggested that habitat shifts influenced Hg accumulation, whereas trophic position, estimated by δ15N values, had limited effects on patterns of Hg bioaccumulation. Diet shifts towards prey more cephalopods that content higher Hg than small fishes (large fishes: 1.77 µg g-1; cephalopods: 0.66 µg g-1 and small fishes 0.48 µg g-1, dry weight) increased Hg accumulation rates in adult pelagic thresher sharks. Concentrations of MeHg in the muscle of both thresher shark (3.42 ± 1.68 µg g-1 in A. pelagicus and 3.78 ± 2.13 µg g-1 in A. superciliosus) exceeded the recommended levels for human consumption. This research provides insight into the factors influencing mercury bioaccumulation in thresher sharks, which are essential for the management and conservation of these species.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Tubarões , Poluentes Químicos da Água , Animais , Humanos , Mercúrio/análise , Bioacumulação , Ecossistema , Tamanho Corporal , Peso Corporal , Poluentes Químicos da Água/análise
2.
Ecology ; 104(1): e3888, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208280

RESUMO

Lipid and fatty acid datasets are commonly used to assess the nutritional composition of organisms, trophic ecology, and ecosystem dynamics. Lipids and their fatty acid constituents are essential nutrients to all forms of life because they contribute to biological processes such as energy flow and metabolism. Assessment of total lipids in tissues of organisms provides information on energy allocation and life-history strategies and can be an indicator of nutritional condition. The analysis of an organism's fatty acids is a widely used technique for assessing nutrient and energy transfer, and dietary interactions in food webs. Although there have been many published regional studies that assessed lipid and fatty acid compositions, many only report the mean values of the most abundant fatty acids. There are limited individual records available for wider use in intercomparison or macro-scale studies. This dataset consists of 4856 records of individual and pooled samples of at least 470 different marine consumer species sampled from tropical, temperate, and polar regions around Australia and in the Southern, Indian, and Pacific Oceans from 1989 to 2018. This includes data for a diverse range of taxa (zooplankton, fish, cephalopods, chondrichthyans, and marine mammals), size ranges (0.02 cm to ~13 m), and that cover a broad range of trophic positions (2.0-4.6). When known, we provide a record of species name, date of sampling, sampling location, body size, relative (%) measurements of tissue-specific total lipid content and abundant fatty acids, and absolute content (mg 100 g-1 tissue) of eicosapentaenoic acid (EPA, 20:5n3) and docosahexaenoic acid (DHA, 22:6n3) as important long-chain (≥C20 ) polyunsaturated omega-3 fatty acids. These records form a solid basis for comparative studies that will facilitate a broad understanding of the spatial and temporal distribution of marine lipids globally. The dataset also provides reference data for future dietary assessments of marine predators and model assessments of potential impacts of climate change on the availability of marine lipids and fatty acids. There are 480 data records within our data file for which the providers have requested that permission for reuse be granted, with the likely condition that they are included as a coauthor on the reporting of the dataset. Records with this condition are indicated by a "yes" under "Conditions_of_data_use" in Data S1: Marineconsumer_FAdata.csv (see Table 2 in Metadata S1 for more details). For all other data records marked as "No" under "Conditions_of_data_use," there are no copyright restrictions for research and/or teaching purposes. We request that users acknowledge use of the data in publications, research proposals, websites, and other outlets via formal citation of this work and original data sources as applicable.


Assuntos
Ecossistema , Ácidos Graxos , Animais , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Cadeia Alimentar , Peixes , Zooplâncton , Mamíferos
3.
Environ Res ; 214(Pt 1): 113828, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817163

RESUMO

Fatty acid (FA) analysis of consumer tissues has recently shown utility in drawing further inferences about trophic niche dynamics of marine predators such as sharks. In this study, we examined liver, plasma, and muscle FAs in five coexisting pelagic sharks (blue (Prionace glauca), silky (Carcharhinus falciformis), bigeye thresher (Alopias superciliosus), pelagic thresher (Alopias pelagicus), and smooth hammerhead (Sphyrna zygaena)) inhabiting the tropical eastern Pacific Ocean. Results showed complex inter- and intra-individual and tissue variation among the five shark species. Based on multivariate analysis of the muscle FAs, P. glauca and C. falciformis have the largest FA niche widths, indicating diverse feeding habits or habitat isolation, whereas A. pelagicus and S. zygaena occupied a narrower niche width, reflecting increased trophic specialization. High percentages of muscle FA niche overlap indicated strong resource competition between S.zygaena and C. falciformis and a degree of dietary isolation by P. glauca. Interpretations of feeding ecology differed based on the analysis of plasma FAs, which could be attributed to higher dietary FA turnover rates. The liver was deemed unsuitable to examine FA niche metrics based on high and unexplained intra-specific variance in liver FAs as well as the unique lipid metabolism in chondrichthyans. Overall, our multi-tissue approach revealed the magnitude of potential competitive interactions among coexisting tropical shark species. It also expanded our understanding of inter-tissue variability and best practices when using FA analysis to estimate trophic niche metrics of sharks.


Assuntos
Tubarões , Animais , Ecossistema , Ácidos Graxos , Oceano Pacífico , Alimentos Marinhos
4.
Mar Pollut Bull ; 181: 113870, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35835052

RESUMO

The concentrations of 13 trace elements were determined in 1032 muscles of 54 small-scale fisheries species collected from the Seychelles waters between 2013 and 2019. Overall, profiles were dominated by zinc (Zn) > arsenic (As) > iron (Fe) > copper (Cu) > selenium (Se), with the spiny lobsters, spanner crab and octopus exhibiting the highest levels of As, Cu and Zn while fish had higher Fe concentrations. Both taxonomy-dependent processes and ecological factors explained the interspecific differences of trace element profiles observed. A benefit-risk assessment revealed that crustaceans and cephalopods were good sources of Cu and Zn. One portion of any fish could provide 30-100 % of daily Se needs, and one portion of demersal and pelagic teleost fish could bring 5-20 % of Cu, Fe and Zn needs, especially for young adult and adult women. Finally, our analysis showed that there was very low health risks associated with small-scale fisheries consumption for the Seychelles population.


Assuntos
Arsênio , Selênio , Oligoelementos , Animais , Arsênio/análise , Cobre/análise , Feminino , Pesqueiros , Peixes , Humanos , Alimentos Marinhos/análise , Selênio/análise , Seicheles , Oligoelementos/análise , Zinco/análise
5.
Environ Pollut ; 309: 119751, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35835271

RESUMO

The silky shark Carcharhinus falciformis is a large pelagic species distributed in the global oceans and was recently listed as "Vulnerable" by the IUCN because of its decline in population due to overfishing. As an apex predator, the silky shark can accumulate elevated quantities of mercury (Hg), posing a potential risk to its remaining population. In this study, total Hg (THg) concentrations were determined in silky shark muscle, liver, dermis, red blood cells (RBC) and plasma sampled from the eastern tropical Pacific, and δ15N values were measured to explore the influence of feeding ecology on Hg accumulation. The highest THg concentrations were in muscle (7.81 ± 6.70 µg g-1 dry weight (dw) or 2.14 ± 1.83 µg g-1 wet weight (ww)) and liver (7.88 ± 10.22 µg g-1 dw or 4.66 ± 6.04 µg g-1 ww) rather than dermis, RBC and plasma. The THg concentrations in all tissue types were significantly correlated with fork length and showed faster accumulation rates after maturity. Maternal THg transfer was observed in silky sharks with embryos having 33.16% and 1.98% in muscle and liver compared with their respective mothers. The potentially harmful THg concentrations in silky shark tissues and embryos may lead to health problems of sharks and consumers. THg concentrations were negatively correlated with δ15N values for all tissues, indicating likely baseline variations in δ15N values that reflect changes in the foraging habitats or regions of silky sharks with size or age. Lastly, strong correlations were observed among THg concentrations of all tissue types, indicating that nonlethal sampling of muscle and dermis tissue can be used effectively to quantify THg concentration of other internal tissues.


Assuntos
Mercúrio , Tubarões , Poluentes Químicos da Água , Animais , Tamanho Corporal , Conservação dos Recursos Naturais , Monitoramento Ambiental , Pesqueiros , Mercúrio/análise , Poluentes Químicos da Água/análise
6.
J Fish Biol ; 98(2): 566-571, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33111319

RESUMO

Following a lack of detected change in white shark Carcharodon carcharias L. 1758 diet and nutritional condition attributed to the interaction with the cage-diving industry, Lusseau and Derous (Tourism Management, 2019, 75, 547-549) cautioned the use of muscle lipids and fatty acids in this context, advocating for other biomarkers. This study provides additional evidence from peer-reviewed literature to contend the usefulness of elasmobranch muscle fatty acid profiles to detail diet and habitat use. It also presents findings from a controlled experiment on captive Port Jackson sharks Heterodontus portusjacksoni (Meyer 1793) whereby long-term (daily for 33 days) 3 min exhaustive chase exercise changed muscle lipid class profiles, supporting its use to infer nutritional condition after activities such as interactions with wildlife tourism operators. Conversely, the unaltered muscle fatty acid and lipid content suggests their use in trophic ecology is not confounded by activities such as interacting with tourism operators, remaining useful biomarkers to investigate diet and habitat use.


Assuntos
Dieta/veterinária , Ácidos Graxos/análise , Lipídeos/análise , Músculo Esquelético/química , Tubarões/fisiologia , Animais , Constituição Corporal/fisiologia , Ecossistema
7.
Chemosphere ; 263: 128024, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297047

RESUMO

Global anthropogenic mercury (Hg) emissions to the atmosphere since industrialization are widely considered to be responsible for a significant increase in surface ocean Hg concentrations. Still unclear is how those inputs are converted into toxic methylmercury (MeHg) then transferred and biomagnified in oceanic food webs. We used a unique long-term and continuous dataset to explore the temporal Hg trend and variability of three tropical tuna species (yellowfin, bigeye, and skipjack) from the southwestern Pacific Ocean between 2001 and 2018 (n = 590). Temporal trends of muscle nitrogen (δ15N) and carbon (δ13C) stable isotope ratios, amino acid (AA) δ15N values and oceanographic variables were also investigated to examine the potential influence of trophic, biogeochemical and physical processes on the temporal variability of tuna Hg concentrations. For the three species, we detected significant inter-annual variability but no significant long-term trend for Hg concentrations. Inter-annual variability was related to the variability in tuna sampled lengths among years and to tuna muscle δ15N and δ13C values. Complementary AA- and model-estimated phytoplankton δ15N values suggested the influence of baseline processes with enhanced tuna Hg concentrations observed when dinitrogen fixers prevail, possibly fuelling baseline Hg methylation and/or MeHg bioavailability at the base of the food web. Our results show that MeHg trends in top predators do not necessary capture the increasing Hg concentrations in surface waters suspected at the global oceanic scale due to the complex and variable processes governing Hg deposition, methylation, bioavailability and biomagnification. This illustrates the need for long-term standardized monitoring programs of marine biota worldwide.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Cadeia Alimentar , Mercúrio/análise , Oceanos e Mares , Oceano Pacífico , Atum , Poluentes Químicos da Água/análise
8.
Ecology ; 102(3): e03265, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33330981

RESUMO

Nitrogen and carbon stable isotope data sets are commonly used to assess complex population to ecosystem responses to natural or anthropogenic changes at regional to global spatial scales, and monthly to decadal timescales. Measured in the tissues of consumers, nitrogen isotopes (δ15 N) are primarily used to estimate trophic position while carbon isotopes (δ13 C) describe habitat associations and feeding pathways. Models of both δ15 N and δ13 C values and their associated variance can be used to estimate likely dietary contributions and niche width and provide inferences about consumer movement and migration. Stable isotope data have added utility when used in combination with other empirical data sets (e.g., stomach content, movement tracking, bioregionalization, contaminant, or fisheries data) and are increasingly relied upon in food web and ecosystem models. While numerous regional studies publish tables of mean δ15 N and δ13 C values, limited individual records have been made available for wider use. Such a deficiency has impeded full utility of the data, which otherwise would facilitate identification of macroscale patterns. The data provided here consist of 4,498 records of individuals of three tuna species, Thunnus alalunga, T. obesus, and T. albacares sampled from all major ocean basins from 2000 to 2015. For each individual tuna, we provide a record of the following: species name, sampling date, sampling location, tuna length, muscle bulk and baseline corrected δ15 N values, and muscle bulk and, where available, lipid corrected δ13 C values. We provide these individual records to support comparative studies and more robust modeling projects seeking to improve understanding of complex marine ecosystem dynamics and their responses to a changing environment. There are no copyright restrictions for research and/or teaching purposes. Users are requested to acknowledge their use of the data in publications, research proposals, websites, and other outlets following the citation instructions in Class III, Section B.

9.
Glob Chang Biol ; 26(2): 458-470, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578765

RESUMO

Considerable uncertainty remains over how increasing atmospheric CO2 and anthropogenic climate changes are affecting open-ocean marine ecosystems from phytoplankton to top predators. Biological time series data are thus urgently needed for the world's oceans. Here, we use the carbon stable isotope composition of tuna to provide a first insight into the existence of global trends in complex ecosystem dynamics and changes in the oceanic carbon cycle. From 2000 to 2015, considerable declines in δ13 C values of 0.8‰-2.5‰ were observed across three tuna species sampled globally, with more substantial changes in the Pacific Ocean compared to the Atlantic and Indian Oceans. Tuna recorded not only the Suess effect, that is, fossil fuel-derived and isotopically light carbon being incorporated into marine ecosystems, but also recorded profound changes at the base of marine food webs. We suggest a global shift in phytoplankton community structure, for example, a reduction in 13 C-rich phytoplankton such as diatoms, and/or a change in phytoplankton physiology during this period, although this does not rule out other concomitant changes at higher levels in the food webs. Our study establishes tuna δ13 C values as a candidate essential ocean variable to assess complex ecosystem responses to climate change at regional to global scales and over decadal timescales. Finally, this time series will be invaluable in calibrating and validating global earth system models to project changes in marine biota.


Assuntos
Fitoplâncton , Atum , Animais , Isótopos de Carbono , Ecossistema , Oceano Índico , Oceanos e Mares , Oceano Pacífico
10.
Environ Sci Technol ; 53(3): 1422-1431, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30672293

RESUMO

Information on ocean scale drivers of methylmercury levels and variability in tuna is scarce, yet crucial in the context of anthropogenic mercury (Hg) inputs and potential threats to human health. Here we assess Hg concentrations in three commercial tuna species (bigeye, yellowfin, and albacore, n = 1000) from the Western and Central Pacific Ocean (WCPO). Models were developed to map regional Hg variance and understand the main drivers. Mercury concentrations are enriched in southern latitudes (10°S-20°S) relative to the equator (0°-10°S) for each species, with bigeye exhibiting the strongest spatial gradients. Fish size is the primary factor explaining Hg variance but physical oceanography also contributes, with higher Hg concentrations in regions exhibiting deeper thermoclines. Tuna trophic position and oceanic primary productivity were of weaker importance. Predictive models perform well in the Central Equatorial Pacific and Hawaii, but underestimate Hg concentrations in the Eastern Pacific. A literature review from the global ocean indicates that size tends to govern tuna Hg concentrations, however regional information on vertical habitats, methylmercury production, and/or Hg inputs are needed to understand Hg distribution at a broader scale. Finally, this study establishes a geographical context of Hg levels to weigh the risks and benefits of tuna consumption in the WCPO.


Assuntos
Mercúrio , Atum , Animais , Havaí , Humanos , Oceanos e Mares , Oceano Pacífico
11.
PLoS One ; 13(4): e0194558, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29608623

RESUMO

Lipid composition in the reproductive and somatic tissues were investigated for female albacore tuna, Thunnus alalunga, in the western Indian Ocean, between latitude 18-21°S and longitude 56-60°E, from January 2014 to March 2015. Highest total lipids (TL) were found in the gonads of spawning-capable females (SCP) (mainly phospholipids, PL, triacylglycerols, TAG and wax esters, WE) and in the liver of females in the late regressing and regenerating ovary phases (mainly TAG, PL and sterols, ST). Muscle TL was low but exhibited high inter-individual variability. Correlations between gonadosomatic and hepatosomatic indices with TL and the lipid classes in albacore gonads and liver describes a pattern of reallocation of energy from the liver to the gonads during SCP. Female albacore were also observed to pursue foraging activities even during this period. Therefore, female albacore can be considered as a capital-income breeder relying mostly on stored lipids before the onset of reproduction and to a lesser extent on energy derived from concurrent feeding during the spawning season. Overall, the three examined tissues had similar general fatty acid profiles with the dominance of 22:6ω3 (docosahexaenoic acid, DHA), 16:0, 18:0 and 18:1ω9. The proportions of fatty acids varied with maturity stage and ovary lobe, with the smaller lobe having significantly higher proportions of essential fatty acids, as well as 16:0 and 18:1n9, compared to the larger one. Our results provide new information on the life-history and energy allocation strategy of albacore which will assist fisheries managers.


Assuntos
Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Lipídeos/análise , Atum/metabolismo , Animais , Composição Corporal , Metabolismo Energético , Feminino , Oceano Índico , Especificidade de Órgãos , Fatores Sexuais
12.
Ann Rev Mar Sci ; 10: 199-228, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298140

RESUMO

Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.


Assuntos
Ecossistema , Ácidos Graxos/metabolismo , Marcação por Isótopo/tendências , Modelos Biológicos , Oligoelementos/metabolismo , Animais , Ecologia/métodos , Cadeia Alimentar
13.
Conserv Physiol ; 5(1): cox002, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28852506

RESUMO

Evaluating how predators metabolize energy is increasingly useful for conservation physiology, as it can provide information on their current nutritional condition. However, obtaining metabolic information from mobile marine predators is inherently challenging owing to their relative rarity, cryptic nature and often wide-ranging underwater movements. Here, we investigate aspects of energy metabolism in four free-ranging shark species (n = 281; blacktip, bull, nurse, and tiger) by measuring three metabolic parameters [plasma triglycerides (TAG), free fatty acids (FFA) and cholesterol (CHOL)] via non-lethal biopsy sampling. Plasma TAG, FFA and total CHOL concentrations (in millimoles per litre) varied inter-specifically and with season, year, and shark length varied within a species. The TAG were highest in the plasma of less active species (nurse and tiger sharks), whereas FFA were highest among species with relatively high energetic demands (blacktip and bull sharks), and CHOL concentrations were highest in bull sharks. Although temporal patterns in all metabolites were varied among species, there appeared to be peaks in the spring and summer, with ratios of TAG/CHOL (a proxy for condition) in all species displaying a notable peak in summer. These results provide baseline information of energy metabolism in large sharks and are an important step in understanding how the metabolic parameters can be assessed through non-lethal sampling in the future. In particular, this study emphasizes the importance of accounting for intra-specific and temporal variability in sampling designs seeking to monitor the nutritional condition and metabolic responses of shark populations.

14.
PLoS One ; 10(7): e0131598, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26135308

RESUMO

Fatty acids are among the least understood nutrients in marine environments, despite their profile as key energy components of food webs and that they are essential to all life forms. Presented here is a novel approach to predict the spatial-temporal distributions of fatty acids in marine resources using generalized additive mixed models. Fatty acid tracers (FAT) of key primary producers, nutritional condition indices and concentrations of two essential long-chain (≥C20) omega-3 fatty acids (EFA) measured in muscle of albacore tuna, Thunnus alalunga, sampled in the south-west Pacific Ocean were response variables. Predictive variables were: location, time, sea surface temperature (SST) and chlorophyll-a (Chla), and phytoplankton biomass at time of catch and curved fork length. The best model fit for all fatty acid parameters included fish length and SST. The first oceanographic contour maps of EFA and FAT (FATscapes) were produced and demonstrated clear geographical gradients in the study region. Predicted changes in all fatty acid parameters reflected shifts in the size-structure of dominant primary producers. Model projections show that the supply and availability of EFA are likely to be negatively affected by increases in SST especially in temperate waters where a 12% reduction in both total fatty acid content and EFA proportions are predicted. Such changes will have large implications for the availability of energy and associated health benefits to high-order consumers. Results convey new concerns on impacts of projected climate change on fish-derived EFA in marine systems.


Assuntos
Ácidos Graxos/química , Cadeia Alimentar , Modelos Biológicos , Temperatura , Atum/fisiologia , Algoritmos , Animais , Biomassa , Clorofila/química , Clorofila A , Mudança Climática , Ácidos Graxos Ômega-3/química , Músculos/química , Oceanografia , Oceano Pacífico , Fitoplâncton/química , Alimentos Marinhos , Análise Espaço-Temporal
15.
Oecologia ; 177(1): 85-95, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25376156

RESUMO

Fatty acids are a valuable tool in ecological studies because of the large number of unique structures synthesized. They provide versatile signatures that are being increasingly employed to delineate the transfer of dietary material through marine and terrestrial food webs. The standard procedure for determining fatty acids generally involves lipid extraction followed by methanolysis to produce methyl esters for analysis by gas chromatography. By directly transmethylating ~50 mg wet samples and adding an internal standard it was possible to greatly simplify the analytical methodology to enable rapid throughput of 20-40 fish tissue fatty acid analyses a day including instrumental analysis. This method was verified against the more traditional lipid methods using albacore tuna and great white shark muscle and liver samples, and it was shown to provide an estimate of sample dry mass, total lipid content, and a condition index. When large fatty acid data sets are generated in this way, multidimensional scaling, analysis of similarities, and similarity of percentages analysis can be used to define trophic connections among samples and to quantify them. These routines were used on albacore and skipjack tuna fatty acid data obtained by direct methylation coupled with literature values for krill. There were clear differences in fatty acid profiles among the species as well as spatial differences among albacore tuna sampled from different locations.


Assuntos
Ácidos Graxos/análise , Cadeia Alimentar , Fígado/metabolismo , Músculo Esquelético/metabolismo , Tubarões , Atum , Animais , Cromatografia Gasosa , Dieta , Euphausiacea , Comportamento Alimentar , Lipídeos , Comportamento Predatório , Especificidade da Espécie
16.
PLoS One ; 9(5): e97877, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24871223

RESUMO

Lipids are major sources of metabolic energy in sharks and are closely linked to environmental conditions and biological cycles, such as those related to diet, reproduction and migration. In this study, we report for the first time, the total lipid content, lipid class composition and fatty acid profiles of muscle and liver tissue of white sharks, Carcharodon carcharias, of various lengths (1.5-3.9 m), sampled at two geographically separate areas off southern and eastern Australia. Muscle tissue was low in total lipid content (<0.9% wet mass, wm) and was dominated by phospholipids (>90% of total lipid) and polyunsaturated fatty acids (34±12% of total fatty acids). In contrast, liver was high in total lipid which varied between 51-81% wm and was dominated by triacylglycerols (>93%) and monounsaturated fatty acids (36±12%). With knowledge of total lipid and dry tissue mass, we estimated the energy density of muscle (18.4±0.1 kJ g-1 dm) and liver (34.1±3.2 kJ g-1 dm), demonstrating that white sharks have very high energetic requirements. High among-individual variation in these biochemical parameters and related trophic markers were observed, but were not related to any one biological or environmental factor. Signature fatty acid profiles suggest that white sharks over the size range examined are generalist predators with fish, elasmobranchs and mammalian blubber all contributing to the diet. The ecological applications and physiological influences of lipids in white sharks are discussed along with recommendations for future research, including the use of non-lethal sampling to examine the nutritional condition, energetics and dietary relationships among and between individuals. Such knowledge is fundamental to better understand the implications of environmental perturbations on this iconic and threatened species.


Assuntos
Metabolismo Energético/fisiologia , Ácidos Graxos/análise , Comportamento Alimentar/fisiologia , Cadeia Alimentar , Lipídeos/análise , Tubarões/fisiologia , Animais , Fígado/química , Análise Multivariada , Músculo Esquelético/química , New South Wales , Oceano Pacífico , Austrália do Sul , Especificidade da Espécie
17.
Mar Environ Res ; 69(1): 18-26, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19726079

RESUMO

Total mercury (THg) and monomethylmercury (MMHg) concentrations were determined in the tissues of demersal shark (Order Squaliformes and the Families: Scyliorhinidae, Hexanchidae) and chimaera species (Families: Chimaeridae and Rhinochimaeridae) from continental shelf and slope waters off southeast Australia, including embryos, juveniles and adults. The distribution of THg in various tissues (muscle, liver, kidney and skin), examined in ten species, shows higher levels in the muscle tissue (1.49+/-0.47mgkg(-1), ww), which accounted for between 59% and 82% of the total body burden of mercury and in the kidney (0.93+/-0.14mgkg(-1), ww) and liver (0.61+/-0.25mgkg(-1), ww) with lower levels observed in the skin (0.12+/-0.06mgkg(-1), ww). Additional THg determinations were performed in the muscle tissue of five other species allowing geographical and inter-specific comparisons. Speciation analysis demonstrated that more than 90% mercury was bound in muscle tissue as MMHg with higher percentages (>95%) observed in sharks species occupying deeper environments. Species differences were observed. Highest THg levels in the muscle tissue (up to 6.64mgkg(-1) wet weight, ww) were recorded in Proscymnodon plunketi and Centrophorus zeehaani (mean values; 4.47+/-1.20 and 3.52+/-0.07mgkg(-1), ww, respectively). Consistent with the ongoing paradigm on mercury bioaccumulation, we systematically observed THg concentrations increasing with animal size from the embryos to the larger sharks. Embryos of Etmopterus baxteri and Centroselachus crepidater had average levels 0.28 and 0.06mgkg(-1) (ww), while adult specimens reached 3.3 and 2.3mgkg(-1) (ww), respectively. THg concentrations in Australian sharks were compared with the same genus collected in other world regions. Levels were closer to data reported for East Atlantic than for the epicontinental Mediterranean margins. At a smaller geographical scale, the habitat effect on mercury concentration in sharks seems less clear. Squalid sharks occupying shelf waters showed higher mean mercury levels relative to their size (body weight, bw) than mid-slope species (0.4-6.7mgkg(-1) bw and 0.3-2.2mgkg(-1) bw, respectively). However, local regional differences (East and South Tasmania vs. Victoria) in Hg levels were not detected for the majority of taxa examined. All species, with the exception of Figaro boardmani showed values greater than 0.5mgkg(-1) (ww) and all but four were above many international regulatory thresholds (1.0mgkg(-1), ww).


Assuntos
Mercúrio/análise , Tubarões/fisiologia , Poluentes Químicos da Água/análise , Análise de Variância , Animais , Austrália , Tamanho Corporal/fisiologia , Informação de Saúde ao Consumidor , Feminino , Masculino , Compostos de Metilmercúrio/análise , Músculos/química , Estações do Ano , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...