Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (184)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35781470

RESUMO

One important application of clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas 9 is the development of knock-out cell lines, specifically to study the function of new genes/proteins associated with a disease, identified during the genetic diagnosis. For the development of such cell lines, two major issues have to be untangled: insertion of the CRISPR tools (the Cas9 and the guide RNA) with high efficiency into the chosen cells, and restriction of the Cas9 activity to the specific deletion of the chosen gene. The protocol described here is dedicated to the insertion of the CRISPR tools in difficult to transfect cells, such as muscle cells. This protocol is based on the use of lentiviruses, produced with plasmids publicly available, for which all the cloning steps are described to target a gene of interest. The control of Cas9 activity has been performed using an adaptation of a previously described system called KamiCas9, in which the transduction of the cells with a lentivirus encoding a guide RNA targeting the Cas9 allows the progressive abolition of Cas9 expression. This protocol has been applied to the development of a RYR1-knock out human muscle cell line, which has been further characterized at the protein and functional level, to confirm the knockout of this important calcium channel involved in muscle intracellular calcium release and in excitation-contraction coupling. The procedure described here can easily be applied to other genes in muscle cells or in other difficult to transfect cells and produce valuable tools to study these genes in human cells.


Assuntos
Edição de Genes , RNA Guia de Cinetoplastídeos , Sistemas CRISPR-Cas , Linhagem Celular , Edição de Genes/métodos , Humanos , Lentivirus/genética , Células Musculares , Músculos , RNA Guia de Cinetoplastídeos/genética
2.
Acta Neuropathol Commun ; 8(1): 192, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176865

RESUMO

Mutations in the RYR1 gene, encoding the skeletal muscle calcium channel RyR1, lead to congenital myopathies, through expression of a channel with abnormal permeability and/or in reduced amount, but the direct functional whole organism consequences of exclusive reduction in RyR1 amount have never been studied. We have developed and characterized a mouse model with inducible muscle specific RYR1 deletion. Tamoxifen-induced recombination in the RYR1 gene at adult age resulted in a progressive reduction in the protein amount reaching a stable level of 50% of the initial amount, and was associated with a progressive muscle weakness and atrophy. Measurement of calcium fluxes in isolated muscle fibers demonstrated a reduction in the amplitude of RyR1-related calcium release mirroring the reduction in the protein amount. Alterations in the muscle structure were observed, with fibers atrophy, abnormal mitochondria distribution and membrane remodeling. An increase in the expression level of many proteins was observed, as well as an inhibition of the autophagy process. This model demonstrates that RyR1 reduction is sufficient to recapitulate most features of Central Core Disease, and accordingly similar alterations were observed in muscle biopsies from Dusty Core Disease patients (a subtype of Central Core Disease), pointing to common pathophysiological mechanisms related to RyR1 reduction.


Assuntos
Debilidade Muscular/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Transgênicos , Mitocôndrias Musculares/patologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Miopatia da Parte Central/metabolismo , Miopatia da Parte Central/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
3.
Hum Mutat ; 38(2): 152-159, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27790796

RESUMO

Dent-2 disease and Lowe syndrome are two pathologies caused by mutations in inositol polyphosphate 5-phosphatase OCRL gene. Both conditions share proximal tubulopathy evolving to chronic kidney failure. Lowe syndrome is in addition defined by a bilateral congenital cataract, intellectual disability, and hypotonia. The pathology evolves in two decades to a severe condition with renal complications and a fatal issue. We describe here a proof of principle for a targeted gene therapy on a mutation of the OCRL gene that is associated with Lowe syndrome. The affected patient bears a deep intronic mutation inducing a pseudo-exon inclusion in the mRNA, leading to a OCRL-1 protein loss. An exon-skipping strategy was designed to correct the effect of the mutation in cultured cells. We show that a recombinant U7-modified small RNA efficiently triggered the restoration of normal OCRL expression at mRNA and protein levels in patient's fibroblasts. Moreover, the PI(4,5)P2 accumulation and cellular alterations that are hallmark of OCRL-1 dysfunction were also rescued. Altogether, we provide evidence that the restoration of OCRL-1 protein, even at a reduced level, through RNA-based therapy represents a potential therapeutic approach for patients with OCRL splice mutations.


Assuntos
Íntrons , Mutação , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Alelos , Processamento Alternativo , Substituição de Aminoácidos , Pré-Escolar , Ativação Enzimática , Éxons , Fibroblastos , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Imagem Molecular , Síndrome Oculocerebrorrenal/diagnóstico , Fenótipo
4.
Sci Rep ; 6: 26986, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27244115

RESUMO

The molecular mechanisms and the biological functions of clathrin independent endocytosis (CIE) remain largely elusive. Alix (ALG-2 interacting protein X), has been assigned roles in membrane deformation and fission both in endosomes and at the plasma membrane. Using Alix ko cells, we show for the first time that Alix regulates fluid phase endocytosis and internalization of cargoes entering cells via CIE, but has no apparent effect on clathrin mediated endocytosis or downstream endosomal trafficking. We show that Alix acts with endophilin-A to promote CIE of cholera toxin and to regulate cell migration. We also found that Alix is required for fast endocytosis and downstream signaling of the interleukin-2 receptor giving a first indication that CIE is necessary for activation of at least some surface receptors. In addition to characterizing a new function for Alix, our results highlight Alix ko cells as a unique tool to unravel the biological consequences of CIE.


Assuntos
Aciltransferases/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Endocitose/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Receptores de Interleucina-2/metabolismo , Aciltransferases/genética , Animais , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Toxina da Cólera/metabolismo , Toxina da Cólera/toxicidade , Clatrina/genética , Clatrina/metabolismo , Embrião de Mamíferos , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Cultura Primária de Células , Ligação Proteica , Receptores de Interleucina-2/genética , Transdução de Sinais
5.
Biochem Biophys Res Commun ; 397(1): 64-9, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20471954

RESUMO

The cytoplasmic protein Alix/AIP1 (ALG-2 interacting protein X) is involved in cell death through mechanisms which remain unclear but require its binding partner ALG-2 (apoptosis-linked gene-2). The latter was defined as a regulator of calcium-induced apoptosis following endoplasmic reticulum (ER) stress. We show here that Alix is also a critical component of caspase 9 activation and apoptosis triggered by calcium. Indeed, expression of Alix dominant-negative mutants or downregulation of Alix afford significant protection against cytosolic calcium elevation following thapsigargin (Tg) treatment. The function of Alix in this paradigm requires its interaction with ALG-2. In addition, we demonstrate that caspase 9 activation is necessary for apoptosis induced by Tg and that this activation is impaired by knocking down Alix. Altogether, our findings identify, for the first time, Alix as a crucial mediator of Ca(2+) induced caspase 9 activation.


Assuntos
Apoptose , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Caspase 9/metabolismo , Animais , Cálcio/farmacologia , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular , Cricetinae , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos , Tapsigargina/farmacologia
6.
Biochem Soc Trans ; 37(Pt 1): 200-3, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19143631

RESUMO

Alix [ALG-2 (apoptosis-linked gene 2)-interacting protein X] is a ubiquitinous adaptor protein first described for its capacity to bind to the calcium-binding protein, ALG-2. Alix regulates neuronal death in ways involving interactions with ALG-2 and with proteins of the ESCRT (endosomal sorting complex required for transport). Even though all Alix interactors characterized to date are involved in endosomal trafficking, the genuine function of the protein in this process remains unclear. We have demonstrated recently that Alix and ALG-2 form in the presence of calcium, a complex with apical caspases and with the endocytosed death receptor TNFR1 (tumour necrosis factor alpha receptor 1), thus suggesting a molecular coupling between endosomes and the cell death machinery.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Endossomos/metabolismo , Neurônios/citologia , Animais , Caspases/metabolismo , Morte Celular , Endossomos/enzimologia , Ativação Enzimática , Humanos , Neurônios/enzimologia
7.
Autophagy ; 5(1): 106-7, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19029801

RESUMO

Alix and ESCRT proteins are required for membrane fission during viral budding and egress and during the abscission stage of cytokinesis. These common roles have suggested that Alix functions as an ESCRT protein, a conclusion challenged by the finding that unlike ESCRTs, which control the formation of multivesicular endosomes, Alix does not influence the degradation of the EGF receptor. We previously showed that Alix controls neuronal death by an unknown mechanism, but dependent on its interaction with ESCRT proteins. Since then, numerous reports have shown that ESCRTs participate in macroautophagy. Given the direct interaction between ESCRTs and Alix, together with the known contribution of autophagy to cell death, it was hypothesized that Alix controls autophagy and thereby cell death. Our recent published results show that this is not the case. ESCRT protein activity therefore needs Alix for viral budding and cytokinesis but not for autophagy. The function of ESCRT can thus be clearly be disconnected from that of Alix.


Assuntos
Autofagia , Proteínas de Ligação ao Cálcio/metabolismo , Endossomos/metabolismo , Complexos Multiproteicos/metabolismo , Animais , Transporte Biológico , Caspases/metabolismo , Humanos
8.
J Biol Chem ; 283(50): 34954-65, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18936101

RESUMO

Alix/AIP1 regulates cell death in a way involving interactions with the calcium-binding protein ALG-2 and with proteins of ESCRT (endosomal sorting complex required for transport). Using mass spectrometry we identified caspase-8 among proteins co-immunoprecipitating with Alix in dying neurons. We next demonstrated that Alix and ALG-2 interact with pro-caspase-8 and that Alix forms a complex with the TNFalpha receptor-1 (TNF-R1), depending on its capacity to bind ESCRT proteins. Thus, Alix and ALG-2 may allow the recruitment of pro-caspase-8 onto endosomes containing TNF-R1, a step thought to be necessary for activation of the apical caspase. In line with this, expression of Alix deleted of its ALG-2-binding site (AlixDeltaALG-2) significantly reduced TNF-R1-induced cell death, without affecting endocytosis of the receptor. In a more physiological setting, we found that programmed cell death of motoneurons, which can be inhibited by AlixDeltaALG-2, is regulated by TNF-R1. Taken together, these results highlight Alix and ALG-2 as new actors of the TNF-R1 pathway.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Animais , Sítios de Ligação , Caspase 8/metabolismo , Morte Celular , Embrião de Galinha , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos/metabolismo , Humanos , Crista Neural/embriologia , Neurônios/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/química
9.
Biochem Biophys Res Commun ; 375(1): 63-8, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18684393

RESUMO

Alix/AIP1 is a cytosolic protein that regulates cell death through mechanisms that remain unclear. Alix binds to two protein members of the so-called Endosomal Sorting Complex Required for Transport (ESCRT), which facilitates membrane fission events during multivesicular endosome formation, enveloped virus budding and cytokinesis. Alix itself has been suggested to participate in these cellular events and is thus often considered to function in the ESCRT pathway. ESCRT proteins were recently implicated in autophagy, a process involved in bulk degradation of cytoplasmic constituents in lysosomes, which can also participate in cell death. In this study, we shown that, unlike ESCRT proteins, Alix is not involved in autophagy. These results strongly suggest that the capacity of several mutants of Alix to block both caspase-dependent and independent cell death does not relate to their capacity to modulate autophagy. Furthermore, they reinforce the conclusion of other studies demonstrating that the role of Alix is different from that of classical ESCRT proteins.


Assuntos
Autofagia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Endossomos/metabolismo , Animais , Autofagia/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular , Cricetinae , Complexos Endossomais de Distribuição Requeridos para Transporte , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Vacúolos/metabolismo
10.
Nat Cell Biol ; 7(7): 653-64, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15951806

RESUMO

During viral infection, fusion of the viral envelope with endosomal membranes and nucleocapsid release were thought to be concomitant events. We show here that for the vesicular stomatitis virus they occur sequentially, at two successive steps of the endocytic pathway. Fusion already occurs in transport intermediates between early and late endosomes, presumably releasing the nucleocapsid within the lumen of intra-endosomal vesicles, where it remains hidden. Transport to late endosomes is then required for the nucleocapsid to be delivered to the cytoplasm. This last step, which initiates infection, depends on the late endosomal lipid lysobisphosphatidic acid (LBPA) and its putative effector Alix/AIP1, and is regulated by phosphatidylinositol-3-phosphate (PtdIns3P) signalling via the PtdIns3P-binding protein Snx16. We conclude that the nucleocapsid is exported into the cytoplasm after the back-fusion of internal vesicles with the limiting membrane of late endosomes, and that this process is controlled by the phospholipids LBPA and PtdIns3P and their effectors.


Assuntos
Citosol/metabolismo , Endossomos/metabolismo , Fusão de Membrana/fisiologia , Nucleocapsídeo/metabolismo , Animais , Transporte Biológico/fisiologia , Bovinos , Linhagem Celular , Cricetinae , Citosol/ultraestrutura , Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos/ultraestrutura , Células Epiteliais/virologia , Fibroblastos/virologia , Células HeLa , Humanos , Lisofosfolipídeos/fisiologia , Fusão de Membrana/efeitos dos fármacos , Microscopia Eletrônica , Microscopia de Fluorescência , Monoglicerídeos , Fosfatos de Fosfatidilinositol/fisiologia , Fosfoproteínas/genética , Fosfoproteínas/fisiologia , RNA Viral/biossíntese , RNA Viral/metabolismo , Transdução de Sinais/fisiologia , Nexinas de Classificação , Fatores de Tempo , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestrutura , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/fisiologia , Vírus da Estomatite Vesicular Indiana/fisiologia , Replicação Viral/genética
11.
Methods Enzymol ; 390: 17-31, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15488168

RESUMO

Macroautophagy or autophagy is an ubiquitous and conserved degradative pathway of cytosolic components, macromolecules or organelles, into the lysosome. By using biochemical and microscopic methods, which allow one to measure the rate of autophagy, the role of two regulators of Gi3 protein activity, activator of G-protein-signaling-3 (AGS3) and Galpha-interacting protein (GAIP), was studied in the control of autophagy in human colon cancer HT-29 cells. In HT-29 cells, autophagy is under the control of the Gi3 protein and, when bound to the GTP, the Galphai3 protein inhibits autophagy, whereas it stimulates autophagy when bound to the GDP. GAIP, which enhances the intrinsic GTPase-activating protein activity of the Galphai3 protein, stimulates autophagy by favoring the GDP-bound form of Galphai3. We showed that GAIP is phosphorylated on its serine 151 and that this phosphorylation is dependent on the presence of amino acids that modulate Raf-1 activity, the kinase upstream of Erk1/2. AGS3, a guanine nucleotide dissociation inhibitor, stimulates autophagy by binding Galphai3 proteins. The intracellular localization of AGS3 (Golgi apparatus and endoplasmic reticulum, two membranes known to be at the origin of autophagosomes) is consistent with its role in autophagy.


Assuntos
Autofagia/fisiologia , Cadaverina/análogos & derivados , Proteínas de Transporte/metabolismo , Fosfoproteínas/metabolismo , Animais , Cadaverina/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo , Corantes Fluorescentes/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , L-Lactato Desidrogenase/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Proteínas RGS , Vacúolos/química , Vacúolos/metabolismo
12.
Cell Struct Funct ; 27(6): 431-41, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12576636

RESUMO

Macroautophagy is a major lysosomal catabolic process conserved from yeast to human. The formation of autophagic vacuoles is stimulated by a variety of intracellular and extracellular stress situations including amino acid starvation, aggregation of misfolded proteins, and accumulation of damaged organelles. Several signaling pathways control the formation of autophagic vacuoles. As some of them are engaged in the control of protein synthesis or cell survival this suggests that macroautophagy is intimately associated with the execution of cell proliferation and cell death programs. Whether or not these different signaling pathways converge to a unique point to trigger the formation of autophagic vacuole remains an open question.


Assuntos
Autofagia/fisiologia , Células Eucarióticas/enzimologia , Mamíferos/metabolismo , Transdução de Sinais/fisiologia , Vacúolos/enzimologia , Animais , Morte Celular/fisiologia , Enzimas/metabolismo , Células Eucarióticas/ultraestrutura , Humanos , Lisossomos/enzimologia , Lisossomos/ultraestrutura , Estresse Fisiológico/metabolismo , Vacúolos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...