Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Eng Technol ; 6(4): 519-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26577483

RESUMO

Over the last decade, there has been a significant volume of research focussed on the utilization of biodegradable polymers such as poly-L-lactide-acid (PLLA) for applications associated with cardiovascular disease. More specifically, there has been an emphasis on upgrading current clinical shortfalls experienced with conventional bare metal stents and drug eluting stents. One such approach, the adaption of fully formed polymeric stents has led to a small number of products being commercialized. Unfortunately, these products are still in their market infancy, meaning there is a clear non-occurrence of long term data which can support their mechanical performance in vivo. Moreover, the load carry capacity and other mechanical properties essential to a fully optimized polymeric stent are difficult, timely and costly to establish. With the aim of compiling rapid and representative performance data for specific stent geometries, materials and designs, in addition to reducing experimental timeframes, Computational bench testing via finite element analysis (FEA) offers itself as a very powerful tool. On this basis, the research presented in this paper is concentrated on the finite element simulation of the mechanical performance of PLLA, which is a fully biodegradable polymer, in the stent application, using a non-linear viscous material model. Three physical stent geometries, typically used for fully polymeric stents, are selected, and a comparative study is performed in relation to their short-term mechanical performance, with the aid of experimental data. From the simulated output results, an informed understanding can be established in relation to radial strength, flexibility and longitudinal resistance, that can be compared with conventional permanent metal stent functionality, and the results show that it is indeed possible to generate a PLLA stent with comparable and sufficient mechanical performance. The paper also demonstrates the attractiveness of FEA as a tool for establishing fundamental mechanical characteristics of polymeric stent performance.


Assuntos
Implantes Absorvíveis , Angioplastia Coronária com Balão/instrumentação , Teste de Materiais/métodos , Poliésteres/química , Stents , Angioplastia Coronária com Balão/métodos , Vasos Coronários/cirurgia , Stents Farmacológicos , Análise de Elementos Finitos , Humanos , Fenômenos Mecânicos , Modelos Teóricos , Modelagem Computacional Específica para o Paciente , Desenho de Prótese/métodos , Resistência à Tração
2.
J Mater Sci Mater Med ; 22(11): 2513-23, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21858721

RESUMO

Bioresorbable polylactides are one of the most important materials for tissue engineering applications. In this work we have prepared scaffolds based on the two optically pure stereoisomers: poly(L: -lactide) (PLLA) and poly(D: -lactide) (PDLA). The crystalline structure and morphology were evaluated by DSC, AFM and X-ray diffraction. PLLA and PDLA crystallized in the α form and the equimolar PLLA/PDLA blend, crystallized in the stereocomplex form, were analyzed by a proliferation assay in contact with mouse L-929 and human fibroblasts and neonatal keratinocytes for in vitro cytotoxicity evaluation. SEM analysis was conducted to determine the cell morphology, spreading and adhesion when in contact with the different polymer surfaces. The preserved proliferation rate showed in MTT tests and the high colonization on the surface of polylactides observed by SEM denote that PLLA, PDLA and the equimolar PLLA/PDLA are useful biodegradable materials in which the crystalline characteristics can be tuned for specific biomedical applications.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Materiais Biocompatíveis , Cristalização , Ácido Láctico/química , Ácido Láctico/farmacologia , Polímeros/química , Polímeros/farmacologia , Animais , Linhagem Celular , Humanos , Teste de Materiais , Camundongos , Microscopia Eletrônica de Varredura , Poliésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...