Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Comput Assist Radiol Surg ; 17(1): 129-139, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34750733

RESUMO

PURPOSE: Fully Convolutional neural Networks (FCNs) are the most popular models for medical image segmentation. However, they do not explicitly integrate spatial organ positions, which can be crucial for proper labeling in challenging contexts. METHODS: In this work, we propose a method that combines a model representing prior probabilities of an organ position in 3D with visual FCN predictions by means of a generalized prior-driven prediction function. The prior is also used in a self-labeling process to handle low-data regimes, in order to improve the quality of the pseudo-label selection. RESULTS: Experiments carried out on CT scans from the public TCIA pancreas segmentation dataset reveal that the resulting STIPPLE model can significantly increase performances compared to the FCN baseline, especially with few training images. We also show that STIPPLE outperforms state-of-the-art semi-supervised segmentation methods by leveraging the spatial prior information. CONCLUSIONS: STIPPLE provides a segmentation method effective with few labeled examples, which is crucial in the medical domain. It offers an intuitive way to incorporate absolute position information by mimicking expert annotators.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Humanos , Pâncreas/diagnóstico por imagem , Tomografia Computadorizada por Raios X
3.
Comput Med Imaging Graph ; 91: 101938, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34153879

RESUMO

Training deep ConvNets requires large labeled datasets. However, collecting pixel-level labels for medical image segmentation is very expensive and requires a high level of expertise. In addition, most existing segmentation masks provided by clinical experts focus on specific anatomical structures. In this paper, we propose a method dedicated to handle such partially labeled medical image datasets. We propose a strategy to identify pixels for which labels are correct, and to train Fully Convolutional Neural Networks with a multi-label loss adapted to this context. In addition, we introduce an iterative confidence self-training approach inspired by curriculum learning to relabel missing pixel labels, which relies on selecting the most confident prediction with a specifically designed confidence network that learns an uncertainty measure which is leveraged in our relabeling process. Our approach, INERRANT for Iterative coNfidencE Relabeling of paRtial ANnoTations, is thoroughly evaluated on two public datasets (TCAI and LITS), and one internal dataset with seven abdominal organ classes. We show that INERRANT robustly deals with partial labels, performing similarly to a model trained on all labels even for large missing label proportions. We also highlight the importance of our iterative learning scheme and the proposed confidence measure for optimal performance. Finally we show a practical use case where a limited number of completely labeled data are enriched by publicly available but partially labeled data.


Assuntos
Aprendizagem , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...