Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Res ; 33(6): 857-871, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37217254

RESUMO

The Diversity Outbred (DO) mice and their inbred founders are widely used models of human disease. However, although the genetic diversity of these mice has been well documented, their epigenetic diversity has not. Epigenetic modifications, such as histone modifications and DNA methylation, are important regulators of gene expression and, as such, are a critical mechanistic link between genotype and phenotype. Therefore, creating a map of epigenetic modifications in the DO mice and their founders is an important step toward understanding mechanisms of gene regulation and the link to disease in this widely used resource. To this end, we performed a strain survey of epigenetic modifications in hepatocytes of the DO founders. We surveyed four histone modifications (H3K4me1, H3K4me3, H3K27me3, and H3K27ac), as well as DNA methylation. We used ChromHMM to identify 14 chromatin states, each of which represents a distinct combination of the four histone modifications. We found that the epigenetic landscape is highly variable across the DO founders and is associated with variation in gene expression across strains. We found that epigenetic state imputed into a population of DO mice recapitulated the association with gene expression seen in the founders, suggesting that both histone modifications and DNA methylation are highly heritable mechanisms of gene expression regulation. We illustrate how DO gene expression can be aligned with inbred epigenetic states to identify putative cis-regulatory regions. Finally, we provide a data resource that documents strain-specific variation in the chromatin state and DNA methylation in hepatocytes across nine widely used strains of laboratory mice.


Assuntos
Metilação de DNA , Histonas , Humanos , Camundongos , Animais , Histonas/genética , Histonas/metabolismo , Regiões Promotoras Genéticas , Cromatina/genética , Epigênese Genética , Código das Histonas , Camundongos Endogâmicos , Expressão Gênica
2.
Cell Mol Life Sci ; 80(4): 107, 2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-36967403

RESUMO

In mammals, meiotic recombination is initiated by the introduction of DNA double strand breaks (DSBs) into narrow segments of the genome, defined as hotspots, which is carried out by the SPO11/TOPOVIBL complex. A major player in the specification of hotspots is PRDM9, a histone methyltransferase that, following sequence-specific DNA binding, generates trimethylation on lysine 4 (H3K4me3) and lysine 36 (H3K36me3) of histone H3, thus defining the hotspots. PRDM9 activity is key to successful meiosis, since in its absence DSBs are redirected to functional sites and synapsis between homologous chromosomes fails. One protein factor recently implicated in guiding PRDM9 activity at hotspots is EWS, a member of the FET family of proteins that also includes TAF15 and FUS/TLS. Here, we demonstrate that FUS/TLS partially colocalizes with PRDM9 on the meiotic chromosome axes, marked by the synaptonemal complex component SYCP3, and physically interacts with PRDM9. Furthermore, we show that FUS/TLS also interacts with REC114, one of the axis-bound SPO11-auxiliary factors essential for DSB formation. This finding suggests that FUS/TLS is a component of the protein complex that promotes the initiation of meiotic recombination. Accordingly, we document that FUS/TLS coimmunoprecipitates with SPO11 in vitro and in vivo. The interaction occurs with both SPO11ß and SPO11α splice isoforms, which are believed to play distinct functions in the formation of DSBs in autosomes and male sex chromosomes, respectively. Finally, using chromatin immunoprecipitation experiments, we show that FUS/TLS is localized at H3K4me3-marked hotspots in autosomes and in the pseudo-autosomal region, the site of genetic exchange between the XY chromosomes.


Assuntos
Lisina , Proteína FUS de Ligação a RNA , Animais , Masculino , Lisina/genética , Proteína FUS de Ligação a RNA/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Recombinação Homóloga , DNA/metabolismo , Meiose/genética , Mamíferos/metabolismo
3.
Nucleic Acids Res ; 51(11): 5364-5376, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-36951113

RESUMO

The human genome contains about 800 C2H2 zinc finger proteins (ZFPs), and most of them are composed of long arrays of zinc fingers. Standard ZFP recognition model asserts longer finger arrays should recognize longer DNA-binding sites. However, recent experimental efforts to identify in vivo ZFP binding sites contradict this assumption, with many exhibiting short motifs. Here we use ZFY, CTCF, ZIM3, and ZNF343 as examples to address three closely related questions: What are the reasons that impede current motif discovery methods? What are the functions of those seemingly unused fingers and how can we improve the motif discovery algorithms based on long ZFPs' biophysical properties? Using ZFY, we employed a variety of methods and find evidence for 'dependent recognition' where downstream fingers can recognize some previously undiscovered motifs only in the presence of an intact core site. For CTCF, high-throughput measurements revealed its upstream specificity profile depends on the strength of its core. Moreover, the binding strength of the upstream site modulates CTCF's sensitivity to different epigenetic modifications within the core, providing new insight into how the previously identified intellectual disability-causing and cancer-related mutant R567W disrupts upstream recognition and deregulates the epigenetic control by CTCF. Our results establish that, because of irregular motif structures, variable spacing and dependent recognition between sub-motifs, the specificities of long ZFPs are significantly underestimated, so we developed an algorithm, ModeMap, to infer the motifs and recognition models of ZIM3 and ZNF343, which facilitates high-confidence identification of specific binding sites, including repeats-derived elements. With revised concept, technique, and algorithm, we can discover the overlooked specificities and functions of those 'extra' fingers, and therefore decipher their broader roles in human biology and diseases.


Assuntos
DNA , Fatores de Transcrição , Dedos de Zinco , Humanos , Sítios de Ligação , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Algoritmos , Motivos de Nucleotídeos , Motivos de Aminoácidos , DNA/química , DNA/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(32): e2123362119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921433

RESUMO

The germinal center (GC) plays a central role in the generation of antigen-specific B cells and antibodies. Tight regulation of the GC is essential due to the inherent risks of tumorigenesis and autoimmunity posed by inappropriate GC B cell processes. Gammaherpesviruses such as Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68) utilize numerous armaments to drive infected naïve B cells, independent of antigen, through GC reactions to expand the latently infected B cell population and establish a stable latency reservoir. We previously demonstrated that the MHV68 microRNA (miRNA) mghv-miR-M1-7-5p represses host EWSR1 (Ewing sarcoma breakpoint region 1) to promote B cell infection. EWSR1 is a transcription and splicing regulator that is recognized for its involvement as a fusion protein in Ewing sarcoma. A function for EWSR1 in B cell responses has not been previously reported. Here, we demonstrate that 1) B cell-specific deletion of EWSR1 had no effect on generation of mature B cell subsets or basal immunoglobulin levels in naïve mice, 2) repression or ablation of EWSR1 in B cells promoted expansion of MHV68 latently infected GC B cells, and 3) B cell-specific deletion of EWSR1 during a normal immune response to nonviral antigen resulted in significantly elevated numbers of antigen-specific GC B cells, plasma cells, and circulating antibodies. Notably, EWSR1 deficiency did not affect the proliferation or survival of GC B cells but instead resulted in the generation of increased numbers of precursor GC B cells. Cumulatively, these findings demonstrate that EWSR1 is a negative regulator of B cell responses.


Assuntos
Linfócitos B , Gammaherpesvirinae , Centro Germinativo , Infecções por Herpesviridae , MicroRNAs , Proteína EWS de Ligação a RNA , Infecções Tumorais por Vírus , Animais , Linfócitos B/imunologia , Linfócitos B/virologia , Gammaherpesvirinae/genética , Gammaherpesvirinae/fisiologia , Deleção de Genes , Centro Germinativo/imunologia , Centro Germinativo/virologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/virologia , Latência Viral
5.
Genetics ; 219(4)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34747456

RESUMO

PRDM9 is a DNA-binding histone methyltransferase that designates and activates recombination hotspots in mammals by locally trimethylating lysines 4 and 36 of histone H3. In mice, we recently reported two independently produced point mutations at the same residue, Glu360Pro (Prdm9EP) and Glu360Lys (Prdm9EK), which severely reduce its H3K4 and H3K36 methyltransferase activities in vivo. Prdm9EP is slightly less hypomorphic than Prdm9EK, but both mutations reduce both the number and amplitude of PRDM9-dependent H3K4me3 and H3K36me3 peaks in spermatocytes. While both mutations cause infertility with complete meiotic arrest in males, Prdm9EP, but not Prdm9EK, is compatible with some female fertility. When we tested the effects of these mutations in vitro, both Prdm9EP and Prdm9EK abolished H3K4 and H3K36 methyltransferase activity in full-length PRDM9. However, in the isolated PRDM9 PR/SET domain, these mutations selectively compromised H3K36 methyltransferase activity, while leaving H3K4 methyltransferase activity intact. The difference in these effects on the PR/SET domain vs the full-length protein shows that PRDM9 is not an intrinsically modular enzyme; its catalytic domain is influenced by its tertiary structure and possibly by its interactions with DNA and other proteins in vivo. These two informative mutations illuminate the enzymatic chemistry of PRDM9, and potentially of PR/SET domains in general, reveal the minimal threshold of PRDM9-dependent catalytic activity for female fertility, and potentially have some practical utility for genetic mapping and genomics.


Assuntos
Histona-Lisina N-Metiltransferase/genética , Domínios PR-SET , Animais , Domínio Catalítico/genética , Feminino , Fertilidade/genética , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Infertilidade Masculina/genética , Masculino , Camundongos , Mutação , Relação Estrutura-Atividade
6.
Development ; 148(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34100066

RESUMO

Spermatogenesis is precisely controlled by complex gene-expression programs. During mammalian male germ-cell development, a crucial feature is the repression of transcription before spermatid elongation. Previously, we discovered that the RNA-binding protein EWSR1 plays an important role in meiotic recombination in mouse, and showed that EWSR1 is highly expressed in late meiotic cells and post-meiotic cells. Here, we used an Ewsr1 pachytene stage-specific knockout mouse model to study the roles of Ewsr1 in late meiotic prophase I and in spermatozoa maturation. We show that loss of EWSR1 in late meiotic prophase I does not affect proper meiosis completion, but does result in defective spermatid elongation and chromocenter formation in the developing germ cells. As a result, male mice lacking EWSR1 after pachynema are sterile. We found that, in Ewsr1 CKO round spermatids, transition from a meiotic gene-expression program to a post-meiotic and spermatid gene expression program related to DNA condensation is impaired, suggesting that EWSR1 plays an important role in regulation of spermiogenesis-related mRNA synthesis necessary for spermatid differentiation into mature sperm.


Assuntos
Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Espermátides/metabolismo , Espermatogênese/genética , Espermatogênese/fisiologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Meiose , Prófase Meiótica I , Camundongos , Camundongos Knockout , Espermatozoides
8.
Mol Biol Cell ; 32(1): 1-14, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33175657

RESUMO

Meiotic recombination in most mammals requires recombination hotspot activation through the action of the histone 3 Lys-4 and Lys-36 methyltransferase PRDM9 to ensure successful double-strand-break initiation and repair. Here we show that EWSR1, a protein whose role in meiosis was not previously clarified in detail, binds to both PRDM9 and pREC8, a phosphorylated meiosis-specific cohesin, in male meiotic cells. We created a Ewsr1 conditional knockout mouse model to deplete EWSR1 before the onset of meiosis and found that absence of EWSR1 causes meiotic arrest with decreased histone trimethylation at meiotic hotspots, impaired DNA double-strand-break repair, and reduced crossover number. Our results demonstrate that EWSR1 is essential for promoting PRDM9-dependent histone methylation and normal meiotic progress, possibly by facilitating the linking between PRDM9-bound hotspots and the nascent chromosome axis through its component cohesin pREC8.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromossomos de Mamíferos/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Recombinação Genética/genética , Animais , Proteínas Cromossômicas não Histona , Troca Genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Masculino , Meiose , Metilação , Camundongos Knockout , Ligação Proteica , Multimerização Proteica , Espermatozoides/metabolismo , Complexo Sinaptonêmico/metabolismo , Coesinas
9.
Sci Adv ; 6(43)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097538

RESUMO

In many mammals, genomic sites for recombination are determined by the histone methyltransferase PRMD9. Some mouse strains lacking PRDM9 are infertile, but instances of fertility or semifertility in the absence of PRDM9 have been reported in mice, canines, and a human female. Such findings raise the question of how the loss of PRDM9 is circumvented to maintain fertility. We show that genetic background and sex-specific modifiers can obviate the requirement for PRDM9 in mice. Specifically, the meiotic DNA damage checkpoint protein CHK2 acts as a modifier allowing female-specific fertility in the absence of PRDM9. We also report that, in the absence of PRDM9, a PRDM9-independent recombination system is compatible with female meiosis and fertility, suggesting sex-specific regulation of meiotic recombination, a finding with implications for speciation.

10.
Genome Res ; 29(7): 1078-1086, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31186301

RESUMO

A hallmark of meiosis is the rearrangement of parental alleles to ensure genetic diversity in the gametes. These chromosome rearrangements are mediated by the repair of programmed DNA double-strand breaks (DSBs) as genetic crossovers between parental homologs. In mice, humans, and many other mammals, meiotic DSBs occur primarily at hotspots, determined by sequence-specific binding of the PRDM9 protein. Without PRDM9, meiotic DSBs occur near gene promoters and other functional sites. Studies in a limited number of mouse strains showed that functional PRDM9 is required to complete meiosis, but despite its apparent importance, Prdm9 has been repeatedly lost across many animal lineages. Both the reason for mouse sterility in the absence of PRDM9 and the mechanism by which Prdm9 can be lost remain unclear. Here, we explore whether mice can tolerate the loss of Prdm9 By generating Prdm9 functional knockouts in an array of genetic backgrounds, we observe a wide range of fertility phenotypes and ultimately demonstrate that PRDM9 is not required for completion of male meiosis. Although DSBs still form at a common subset of functional sites in all mice lacking PRDM9, meiotic outcomes differ substantially. We speculate that DSBs at functional sites are difficult to repair as a crossover and that by increasing the efficiency of crossover formation at these sites, genetic modifiers of recombination rates can allow for meiotic progression. This model implies that species with a sufficiently high recombination rate may lose Prdm9 yet remain fertile.


Assuntos
Histona-Lisina N-Metiltransferase/fisiologia , Meiose , Animais , Feminino , Fertilidade/genética , Fertilidade/fisiologia , Histona-Lisina N-Metiltransferase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espermatogênese/fisiologia , Cromossomo X
11.
Curr Biol ; 29(6): 1002-1018.e7, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30853435

RESUMO

Meiotic recombination is required for correct segregation of chromosomes to gametes and to generate genetic diversity. In mice and humans, DNA double-strand breaks (DSBs) are initiated by SPO11 at recombination hotspots activated by PRDM9-catalyzed histone modifications on open chromatin. However, the DSB-initiating and repair proteins are associated with a linear proteinaceous scaffold called the chromosome axis, the core of which is composed of cohesin proteins. STAG3 is a stromalin subunit common to all meiosis-specific cohesin complexes. Mutations of meiotic cohesin proteins, especially STAG3, perturb both axis formation and recombination in the mouse, prompting determination of how the processes are mechanistically related. Protein interaction and genetic analyses revealed that PRDM9 interacts with STAG3 and REC8 in cooperative relationships that promote normal levels of meiotic DSBs at recombination hotspots in spermatocytes. The efficacy of the Prdm9-Stag3 genetic interaction in promoting DSB formation depends on PRDM9-mediated histone methyltransferase activity. Moreover, STAG3 deficiency has a major effect on DSB number even in the absence of PRDM9, showing that its role is not restricted to canonical PRDM9-activated hotspots. STAG3 and REC8 promote axis localization of the DSB-promoting proteins HORMAD1, IHO1, and MEI4, as well as SPO11 activity. These results establish that PRDM9 and axis-associated cohesin complexes together coordinate and facilitate meiotic recombination by recruiting key proteins for initiation of DSBs, thereby associating activated hotspots with DSB-initiating complexes on the axis.


Assuntos
Proteínas de Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Histona-Lisina N-Metiltransferase/genética , Meiose , Animais , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Masculino , Camundongos , Espermatócitos
12.
Genetics ; 211(3): 831-845, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30593494

RESUMO

The epigenetic landscape varies greatly among cell types. Although a variety of writers, readers, and erasers of epigenetic features are known, we have little information about the underlying regulatory systems controlling the establishment and maintenance of these features. Here, we have explored how natural genetic variation affects the epigenome in mice. Studying levels of H3K4me3, a histone modification at sites such as promoters, enhancers, and recombination hotspots, we found tissue-specific trans-regulation of H3K4me3 levels in four highly diverse cell types: male germ cells, embryonic stem cells, hepatocytes, and cardiomyocytes. To identify the genetic loci involved, we measured H3K4me3 levels in male germ cells in a mapping population of 59 BXD recombinant inbred lines. We found extensive trans-regulation of H3K4me3 peaks, including six major histone quantitative trait loci (QTL). These chromatin regulatory loci act dominantly to suppress H3K4me3, which at hotspots reduces the likelihood of subsequent DNA double-strand breaks. QTL locations do not correspond with genes encoding enzymes known to metabolize chromatin features. Instead their locations match clusters of zinc finger genes, making these possible candidates that explain the dominant suppression of H3K4me3. Collectively, these data describe an extensive, set of chromatin regulatory loci that control the epigenetic landscape.


Assuntos
Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Hepatócitos/metabolismo , Código das Histonas , Miócitos Cardíacos/metabolismo , Espermatogônias/metabolismo , Animais , Células Cultivadas , Montagem e Desmontagem da Cromatina , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Especificidade de Órgãos , Locos de Características Quantitativas , Recombinação Genética
13.
PLoS Genet ; 14(10): e1007657, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30365547

RESUMO

In most mammals, including mice and humans, meiotic recombination is determined by the meiosis specific histone methytransferase PRDM9, which binds to specific DNA sequences and trimethylates histone 3 at lysine-4 and lysine-36 at the adjacent nucleosomes. These actions ensure successful DNA double strand break formation and repair that occur on the proteinaceous structure forming the chromosome axis. The process of hotspot association with the axis after their activation by PRDM9 is poorly understood. Previously, we and others have identified CXXC1, an ortholog of S. cerevisiae Spp1 in mammals, as a PRDM9 interactor. In yeast, Spp1 is a histone methyl reader that links H3K4me3 sites with the recombination machinery, promoting DSB formation. Here, we investigated whether CXXC1 has a similar function in mouse meiosis. We created two Cxxc1 conditional knockout mouse models to deplete CXXC1 generally in germ cells, and before the onset of meiosis. Surprisingly, male knockout mice were fertile, and the loss of CXXC1 in spermatocytes had no effect on PRDM9 hotspot trimethylation, double strand break formation or repair. Our results demonstrate that CXXC1 is not an essential link between PRDM9-activated recombination hotspot sites and DSB machinery and that the hotspot recognition pathway in mouse is independent of CXXC1.


Assuntos
Quebras de DNA de Cadeia Dupla , Histona-Lisina N-Metiltransferase/metabolismo , Transativadores/genética , Animais , DNA/metabolismo , Reparo do DNA , Células Germinativas/fisiologia , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Histonas/metabolismo , Recombinação Homóloga , Masculino , Meiose/genética , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espermatócitos/metabolismo , Espermatócitos/fisiologia , Transativadores/metabolismo
14.
Trends Genet ; 34(4): 291-300, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29366606

RESUMO

PRDM9 is a zinc finger protein that binds DNA at specific locations in the genome where it trimethylates histone H3 at lysines 4 and 36 at surrounding nucleosomes. During meiosis in many species, including humans and mice where PRDM9 has been most intensely studied, these actions determine the location of recombination hotspots, where genetic recombination occurs. In addition, PRDM9 facilitates the association of hotspots with the chromosome axis, the site of the programmed DNA double-strand breaks (DSBs) that give rise to genetic exchange between chromosomes. In the absence of PRDM9 DSBs are not properly repaired. Collectively, these actions determine patterns of genetic linkage and the possibilities for chromosome reorganization over successive generations.


Assuntos
Genoma , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Meiose , Recombinação Genética , Animais , Quebras de DNA de Cadeia Dupla , Células Eucarióticas/citologia , Células Eucarióticas/enzimologia , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Metilação , Camundongos , Nucleossomos/enzimologia , Nucleossomos/genética , Domínios Proteicos
15.
Mol Biol Cell ; 28(3): 488-499, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27932493

RESUMO

In mammals, meiotic recombination occurs at 1- to 2-kb genomic regions termed hotspots, whose positions and activities are determined by PRDM9, a DNA-binding histone methyltransferase. We show that the KRAB domain of PRDM9 forms complexes with additional proteins to allow hotspots to proceed into the next phase of recombination. By a combination of yeast-two hybrid assay, in vitro binding, and coimmunoprecipitation from mouse spermatocytes, we identified four proteins that directly interact with PRDM9's KRAB domain, namely CXXC1, EWSR1, EHMT2, and CDYL. These proteins are coexpressed in spermatocytes at the early stages of meiotic prophase I, the limited period when PRDM9 is expressed. We also detected association of PRDM9-bound complexes with the meiotic cohesin REC8 and the synaptonemal complex proteins SYCP3 and SYCP1. Our results suggest a model in which PRDM9-bound hotspot DNA is brought to the chromosomal axis by the action of these proteins, ensuring the proper chromatin and spatial environment for subsequent recombination events.


Assuntos
Cromossomos/fisiologia , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Animais , Cromatina/metabolismo , Cromossomos/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Genoma , Histona-Lisina N-Metiltransferase/fisiologia , Recombinação Homóloga , Masculino , Meiose/fisiologia , Camundongos , Domínios Proteicos , Recombinação Genética/fisiologia , Espermatócitos/metabolismo
16.
PLoS Genet ; 12(6): e1006146, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27362481

RESUMO

In many mammals, including humans and mice, the zinc finger histone methyltransferase PRDM9 performs the first step in meiotic recombination by specifying the locations of hotspots, the sites of genetic recombination. PRDM9 binds to DNA at hotspots through its zinc finger domain and activates recombination by trimethylating histone H3K4 on adjacent nucleosomes through its PR/SET domain. Recently, the isolated PR/SET domain of PRDM9 was shown capable of also trimethylating H3K36 in vitro, raising the question of whether this reaction occurs in vivo during meiosis, and if so, what its function might be. Here, we show that full-length PRDM9 does trimethylate H3K36 in vivo in mouse spermatocytes. Levels of H3K4me3 and H3K36me3 are highly correlated at hotspots, but mutually exclusive elsewhere. In vitro, we find that although PRDM9 trimethylates H3K36 much more slowly than it does H3K4, PRDM9 is capable of placing both marks on the same histone molecules. In accord with these results, we also show that PRDM9 can trimethylate both K4 and K36 on the same nucleosomes in vivo, but the ratio of K4me3/K36me3 is much higher for the pair of nucleosomes adjacent to the PRDM9 binding site compared to the next pair further away. Importantly, H3K4me3/H3K36me3-double-positive nucleosomes occur only in regions of recombination: hotspots and the pseudoautosomal (PAR) region of the sex chromosomes. These double-positive nucleosomes are dramatically reduced when PRDM9 is absent, showing that this signature is PRDM9-dependent at hotspots; the residual double-positive nucleosomes most likely come from the PRDM9-independent PAR. These results, together with the fact that PRDM9 is the only known mammalian histone methyltransferase with both H3K4 and H3K36 trimethylation activity, suggest that trimethylation of H3K36 plays an important role in the recombination process. Given the known requirement of H3K36me3 for double strand break repair by homologous recombination in somatic cells, we suggest that it may play the same role in meiosis.


Assuntos
Histona-Lisina N-Metiltransferase/genética , Recombinação Homóloga/genética , Meiose/genética , Recombinação Genética/genética , Animais , Sítios de Ligação/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Histona Metiltransferases , Histonas/genética , Camundongos , Camundongos Endogâmicos C57BL , Nucleossomos/genética , Dedos de Zinco/genética
17.
Science ; 352(6284): 474-7, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26940866

RESUMO

Examining complete gene knockouts within a viable organism can inform on gene function. We sequenced the exomes of 3222 British adults of Pakistani heritage with high parental relatedness, discovering 1111 rare-variant homozygous genotypes with predicted loss of function (knockouts) in 781 genes. We observed 13.7% fewer homozygous knockout genotypes than we expected, implying an average load of 1.6 recessive-lethal-equivalent loss-of-function (LOF) variants per adult. When genetic data were linked to the individuals' lifelong health records, we observed no significant relationship between gene knockouts and clinical consultation or prescription rate. In this data set, we identified a healthy PRDM9-knockout mother and performed phased genome sequencing on her, her child, and control individuals. Our results show that meiotic recombination sites are localized away from PRDM9-dependent hotspots. Thus, natural LOF variants inform on essential genetic loci and demonstrate PRDM9 redundancy in humans.


Assuntos
Consanguinidade , Saúde , Histona-Lisina N-Metiltransferase/genética , Adulto , Análise Mutacional de DNA , Prescrições de Medicamentos , Exoma/genética , Feminino , Fertilidade , Técnicas de Inativação de Genes , Genes Letais , Loci Gênicos , Genoma Humano , Recombinação Homóloga , Homozigoto , Humanos , Masculino , Mães , Paquistão/etnologia , Fenótipo , Reino Unido
18.
PLoS Genet ; 11(9): e1005512, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26368021

RESUMO

Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9+/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape.


Assuntos
Alelos , Histona-Lisina N-Metiltransferase/genética , Recombinação Genética , Animais , Dano ao DNA , Mecanismo Genético de Compensação de Dose , Células HEK293 , Heterozigoto , Histonas/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Locos de Características Quantitativas
19.
Artigo em Inglês | MEDLINE | ID: mdl-26351520

RESUMO

BACKGROUND: Genetic recombination plays an important role in evolution, facilitating the creation of new, favorable combinations of alleles and the removal of deleterious mutations by unlinking them from surrounding sequences. In most mammals, the placement of genetic crossovers is determined by the binding of PRDM9, a highly polymorphic protein with a long zinc finger array, to its cognate binding sites. It is one of over 800 genes encoding proteins with zinc finger domains in the human genome. RESULTS: We report a novel technique, Affinity-seq, that for the first time identifies both the genome-wide binding sites of DNA-binding proteins and quantitates their relative affinities. We have applied this in vitro technique to PRDM9, the zinc-finger protein that activates genetic recombination, obtaining new information on the regulation of hotspots, whose locations and activities determine the recombination landscape. We identified 31,770 binding sites in the mouse genome for the PRDM9(Dom2) variant. Comparing these results with hotspot usage in vivo, we find that less than half of potential PRDM9 binding sites are utilized in vivo. We show that hotspot usage is increased in actively transcribed genes and decreased in genomic regions containing H3K9me2/3 histone marks or bound to the nuclear lamina. CONCLUSIONS: These results show that a major factor determining whether a binding site will become an active hotspot and what its activity will be are constraints imposed by prior chromatin modifications on the ability of PRDM9 to bind to DNA in vivo. These constraints lead to the presence of long genomic regions depleted of recombination.

20.
Chromosoma ; 124(3): 397-415, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25894966

RESUMO

Developmental progress of germ cells through meiotic phases is closely tied to ongoing meiotic recombination. In mammals, recombination preferentially occurs in genomic regions known as hotspots; the protein that activates these hotspots is PRDM9, containing a genetically variable zinc finger (ZNF) domain and a PR-SET domain with histone H3K4 trimethyltransferase activity. PRDM9 is required for fertility in mice, but little is known about its localization and developmental dynamics. Application of spermatogenic stage-specific markers demonstrates that PRDM9 accumulates in male germ cell nuclei at pre-leptonema to early leptonema but is no longer detectable in nuclei by late zygonema. By the pachytene stage, PRDM9-dependent histone H3K4 trimethyl marks on hotspots also disappear. PRDM9 localizes to nuclei concurrently with the deposition of meiotic cohesin complexes, but is not required for incorporation of cohesin complex proteins into chromosomal axial elements, or accumulation of normal numbers of RAD51 foci on meiotic chromatin by late zygonema. Germ cells lacking PRDM9 exhibit inefficient homology recognition and synapsis, with aberrant repair of meiotic DNA double-strand breaks and transcriptional abnormalities characteristic of meiotic silencing of unsynapsed chromatin. Together, these results on the developmental time course for nuclear localization of PRDM9 establish its direct window of function and demonstrate the independence of chromosome axial element formation from the concurrent PRDM9-mediated activation of recombination hotspots.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Pareamento Cromossômico , Histona-Lisina N-Metiltransferase/metabolismo , Meiose , Animais , Dano ao DNA , Reparo do DNA , Camundongos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...